
AI and Human Player Cooperation in RTS Games
Andreas Stiegler

Stuttgart Media University,
Germany

stiegler@hdm-stuttgart.de

Daniel Jack Livingstone
University of the West of Scotland,

Scotland

daniel.livingstone@uws.ac.uk

ABSTRACT

The challenges associated with implementing cooperation

between Artificial Intelligence players and human players cover

some interesting areas of Artificial Intelligence research. One of

the key requirements to efficient cooperation is good

communication, to share information on current state and future

plans.

Keywords

Artificial Intelligence, Game Development, Semantic Structures,

StarCraft

1. Communication
We can consider two forms of communication: unidirectional and

bidirectional. Unidirectional communication means that only one

party can actively promote ideas or issue orders, while other

parties can only follow the instructions or perhaps use a simple

response, to confirm or deny, accept or reject. Although even this

is strictly speaking bi-directional, we consider the main flow of

communication as being unidirectional here, as most importantly

only one party can actively propose new plans and trigger new

dialogs for communication, while other parties are only reacting

on requests. For many game genres, unidirectional

communication may feel very natural. In the case of a first person

shooter, for example, where the player is often the leader of a

special unit or a captain of some kind, issuing orders to their

teammates. Such hierarchical structures promote unidirectional

communication and, with some creative mission scripting

wrapped around it to blur the deficits, can produce a very

enjoyable game experience.

Yet, there are also genres where such a unidirectional

communication is insufficient. One obvious example are Real

Time Strategy games. Here, a player usually embodies a general

of some kind, leading an army to victory. Any AI allies, however,

are also generals and would be unlikely to simply follow the

orders of the player. When two human players would play such a

game together, they would probably talk about their strategy and

propose ideas. That’s a bidirectional communication, where all

parties can actively trigger communication, can propose ideas and

can respond to the ideas of other players with complex feedback.

Following the old motto of “do it right or don’t do it at all”, we

don’t see such bidirectional communication with AI players in

many games, as there are some difficult challenges involved. We

are working on solutions to these problems and this demo will

show an early proof of concept.

2. SEMANTIC UNDERSTANDING
Implementing bidirectional communication, where players can

issue commands and requests to an AI player and vice versa has to

overcome a number of challenges. One such challenge is the huge

semantic gap between the AI players and a human player. A

human player enters the game with several decades of life

experience and probably with a bunch of expectations from other

games of the same genre or actual knowledge about this specific

game from previous game rounds [1] [2] [3]. The AI, on the other

hand, may not even be a single entity, but a cluster of agents and

scripts that care for different subsets of the game [4] [5], for

example goal identification, economy management or tactical unit

handling. During communication, a human player can - and is

likely to - link low level tactical and high level strategic aspects

together to form semantically rich statements and commands.

There may be no single agent on the AI side that qualified to

respond, as the AI has limited semantics and perhaps little

understanding of the game or its goals and game mechanics at a

symbolic level.

3. STARCRAFT 2 TUG OF WAR
Our approach to these problems involves two steps. First: limit the

communication on the human side. Second: establish semantic

understanding of the game on the AI side. By doing so, we try to

bring both the human and the AI players on a similar level of

communication. The early proof of concept we would like to

demonstrate is a StarCraft 2 [6] “Tug of War” scenario. These

“Tug of War” games are simplified versions of the full game,

where players only build up an economy and chose units to spawn

in waves, without actually commanding the units in battle and

therefore skipping most micro management. The key to such “Tug

of War” is to use the game mechanics to your advantage, by

building the right counter units or unit combinations and thus

requiring a strong semantic understanding of the different game

elements. These scenarios are also usually played in teams of 2-6

players where communication and cooperation become essential,

to adapt your unit composition to the strategies of your team

mates. These properties make “Tug of War” games a good test

bed to work on cooperation without having to deal with the full

spectrum of a RTS AI.

Our scenario is a common “Tug of War” game with two teams of

3 human players. In addition, every human player is grouped with

an AI player with which they share research but have individual

economy. The “AI Buddy” of a human player also spawns its

wave at the same time as the human player, thus emphasizing

strong cooperation to maximize the efficiency of the combined

army.

Communication with your “AI Buddy” takes place in a dedicated

panel, that offer symbolic communication for general strategies

like “Focus on military force” or “Focus on research” and

different roles a player can fulfill, like “Deal a lot of damage” or

“Support me”. While this communication is rather abstract and

simplified on the human end, it is covered by a semantic structure

on the AI end, enabling it to understand the complex counter

mechanics of StarCraft 2. The communication through this panel

is also bidirectional, allowing the AI to express what it wants the

human player to do and how happy the AI is with the current

situation.

4. Implementation
The AI Implementation uses a static semantic net storing the game

mechanics relations, like weapon types, unit categories or tech-

tree requirements. The AI players query the semantic net in order

to understand the symbolic commands of the human players. This

allows the AI players to interpret the strategy “Focus on military

force” in respect to the current situation, for example the army

composition of allied players or the last observed hostile waves.

The semantic structures and their query language are written in a

Lisp-Like domain specific language, tailored to the requirements

of the StarCraft 2 engine and are compiled into the actual

StarCraft 2 in-Game scripting representation for integration. This

allows maintaining and visualizing the semantic net externally,

while still employing performance optimizations like caching

during run-time.

An example would be a team where one player is supposed to

build a strong early-game force, buying time for their teammate to

construct necessary requirements for stronger late-game units.

One of the important challenges for both human and AI players is

now answering the question which units to build. The semantic

structure contains most gameplay elements and their relations, of

which “requires” and “counters” are the relevant ones for this

example. The following figure shows a simplified excerpt of a

semantic structure covering two units with their requirements. The

“counters” relation expresses that the Siege Tank is a good choice

fielding against Space Marines.

Figure 1: Simplified Semantic Structure

In reality, these relations are obviously more complex, as a

“counters” relation contains many parameters regarding its

strength, requirements like unit positioning or modifiers

depending on tech-tree progress, resource income and other

contexts. As unit costs different amounts of three distinct

resources, these will also have to be accounted for. A Siege Tank

is a strong counter against Space Marines, but it also costs a lot

more.

Based on that simplified structure, however, an AI player could

identify that building Siege Tanks is a good choice against the

enemies Space Marine army. Walking down the “requires”

relations, it further identifies that it would need a Factory it does

not yet command. As building such a requirement is an

investment of resources, communication with its allies is used to

identify the threshold of estimated gain of producing a target unit

in respect to the resource costs of building the requirements first.

The early-game partner in the game would have a higher

threshold, only advancing in the tech-tree if a high-tech unit is

really a significantly strong counter of the enemy force, while the

teching player would have a smaller threshold, investing more

resources in building up requirements for stronger counters

instead of building early game forces.

5. GOAL AND OUTLOOK
The goal of this prototype is to see how well bi-directional

communication with an AI player can be implemented in an RTS

using rather simple methods on both the human and the AI end.

The very simple symbolic communication on the human-side of

communication could be enhanced significantly, for example by

adding spatial information, using mouse gestures or deploying

natural language processing to enable text or voice chat. The

semantic net on the AI side could also be expanded. A dynamic

semantic net looks promising, allowing adjusting the relations

between entities (unit types) at runtime, for example to cover

certain unit formations where certain counter mechanics suddenly

behave differently.

This proof of concept we search for the technical minimum that

needs to be implemented to achieve enjoyable cooperation with an

AI agent, intentionally skipping some more advanced techniques.

From there, we want to expand these concepts to a full RTS and

benchmark the different AI-implementation and human-usability

methods.

REFERENCES

[1] A. Drachen and J. H. Smith, "Player talk - the functions of

communication in multplayer role-playing games,"

Computers in Entertainment - SPECIAL ISSUE: Media Arts

(Part II), vol. 6, no. 4, 2008.

[2] G. Wadley, M. Gibbs and P. Benda, "Speaking in character:

using voice-over-IP to communicate within MMORPGs," in

IE '07 Proceedings of the 4th Australasian conference on

Interactive entertainment, 2007.

[3] L. Dabbish, R. Kraut and J. Patton, "Communication and

commitment in an online game team," in Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems, 2012.

[4] M. Ramsey and S. Rabin, "Designing a Multi-Tiered AI

Framework," in AI Game Programming Wisdom 2,

Hingham, MA, Charles River Media, Inc., 2004.

[5] M. van Lent and J. Laird, "Developing an Artificial

Intelligence Engine," in Proceedings of the Game Developers

Conference, San Jose, CA, 1999, pp. 577-588.

[6] Blizzard Entertainment, StarCraft II: Wings of Liberty, 2010.

