
A framework for biometric playtesting of games

Dirk P. Janssen
Academy for Digital

Entertainment
NHTV University of Applied

Sciences
Breda, The Netherlands
janssen.d@nhtv.nl

Licia Calvi
Academy for Digital

Entertainment
NHTV University of Applied

Sciences
Breda, The Netherlands

calvi.l@nhtv.nl

Stefano Gualeni
Academy for Digital

Entertainment
NHTV University of Applied

Sciences
Breda, The Netherlands
gualeni.s@nhtv.nl

ABSTRACT
A framework is described that can assist game develop-
ers in using biometric (psychophysiological) methods while
playtesting. Biometric methods can give developers a valu-
able additional window on the playtester’s experience.

1. THE USE OF BIOMETRICS
When developing a game (or any other media product), is
important to collect as much feedback from users as possible.
After all, users will determine the success or failure of the
game and their decision to play, buy and recommend a game
depends partially on having a smooth and satisfying play
experience.

Several methods for collecting data during playtests have
been developed, with interviews and observaton still being
the most popular ones. Newer methods include logging game
metrics and collecting data about the physical state of the
player, called biometrics or psychophysiology.

Both game metrics and biometrics add objective measure-
ments to the subjective results from interviews and player
observation. The industry has widely recognized the role of
game metrics in playtesting and in the continuous evalua-
tion of a game after it has gone live. Game metrics are often
used for marketing (conversion rate), but it feed into user
experience analysis [5]. In a large number of studies over
the past years, the value of the biometric approach has been
demonstrated, see reviews in [1] and [2], but the methods is
infrequently used in practice.

We think the low rate of adoption of the biometrics method
has to do with a number of factors, the most important
one being lack of a widely adopted and generic framework
for measuring this data. For game metrics, several com-
mercial frameworks exist (playtomic.com, mochibot.com,
flurry.com) and it is relatively easy to program a propri-
etary system. Although expertise is required for the success-
ful in-depth analysis of game metrics, a number of widely ac-

cepted measures can be automatically computed by the ex-
isting frameworks (conversion rate, time on game, heatmap
of player deaths, etc.). A framework has been developed for
emotion extraction from mixed-media and biometrics data,
but this has not caught on with the industry [3].

2. REQUIREMENTS
Our long-term goal is to make the use of biometrics just as
straightforward as the use of game metrics. In this paper,
we will focus on the cornerstone of all data acquisition: the
data collection framework.

A biometric data collection framework for games should,
to our mind, have the following properties: A simple and
straightforward interface for programmers; as much over-
lap between game metrics logging and biometrics logging as
possible; truly cross platform; independent of the biometrics
hardware provider; can test in a multiplayer setting; auto-
mated test running and data aggregation; automatic gen-
eration of aggregated data over levels, maps, or whichever
unit of analysis you indicate; easily reusable output in the
form of pdf figures and spreadsheet files; widely accepted
data storage format.

3. IMPLEMENTATION
In essence, our framework is a collection of small programs
that each do one dedicated task related to data collection.
An overview of the various building blocks is given in Fig-
ure 1. The assignment of these blocks to one or many com-
puters is completely up to the user.

The four most important blocks acquire a type of data (bio-
metrics, audio, video, logging) and either store this data
locally or transmitted to the server. We commonly work
with local storage of video and audio data and server stor-
age of logging and biometrics data. Nightly jobs ensure that
all data ends up on the server eventually. A small extension
that we are working on now will allow low-res video to be
send to the network directly (for monitoring), while using
delayed copy for the full resolution.

The biometric data collection program is responsible for in-
terfacing with the hardware. This is the only part of the
framework which is hardware dependent: it will initialize the
biometrics hardware, pull and transmit data to the server.

The audiocapture and videocapture programs do just what
their names imply. Both programs create two types of out-



Mic Cam1+2 Biomed Game

audiocapture videocapture biom. data
collection

logging
dispatcher

Signals Log
MsgsAudio Video

. 

Delayed copy Immediate copy

copier controller

Video
Pre processing

Log Message
Pre processing

mediaconv readlog

Annotated Video
Artifact detection
Feature review

Statistics & features
Game analytics
Region detection

elan stats

Conclusions

Figure 1: Overview of the building blocks of the
framework

put: An common audio file (wav format) or video file (avi
format), and a stream of synchronization messages that are
sent to the server.

The logging dispatcher is a DLL that is loaded by the game
under test. The DLL will take care of synchronizing with
the server and sending the messages over the wire. We have
alternative implementations for scenarios in which a DLL
cannot be used, and which use ports or HTTP-GET requests
(but provide less accurate timing).

A logging message is a simple text string, adhering to this
standard: Words are separated by spaces; the first word is
the command. (COLLECT, JUMP, FIRE, etc.); each of the
following words is a key-value pair, written with an equal
sign (object=coin, x=40, bullet=1, etc.).

Once the data arrives on the server, they are stored in the
Hierarchical Data Format (version 5) [4]. This format, which
was developed by NCSA and NASA, is specifically designed
for storing numerical data in matrix format. All data files
from one player are kept together to facilitate archiving.

Two pre-processing steps are required before the data can
be analyzed: A first program will align the data onsets of
the streams by trimming data. It will also convert the video
data from its raw avi format to compressed mp4, adjusting
it to be exactly in sync with the other streams as it is pro-
cessed. The second program will extend the event-based log-
ging data as received from the game. We require game-state
information to answer analysis questions like “which actions
do players use in this area”. The logging pre-processor adds
such information, marks regions of interest, and introduces
new logging messages to facilitate analysis.

To check the integrity of the data and to manually mark
stretches of time for exclusion, we turn to a multimedia an-
notation tool ELAN [6]. This program will show multiple

video tracks, the audio track, and annotation tiers. We can
include a biometric signal in the display too. ELAN is used
to indicate give the analyst feedback on when episodes, lev-
els, and events occurred, and it is used to mark artifacts
(sneezing, coughing, etc.) for exclusion.

Finally, a statistics module will aggregate metrics and bio-
metrics data over the requested regions, time spans, levels,
or any combination of the above. We use Python as a flex-
ible and accessible query language to formulate such aggre-
gations. A number of standard graphs and tables are pro-
duced. The metric and biometrics data is also written to a
CSV spreadsheet format, so it can be further processed and
analyzed. A limitation of the current implementation is that
the statistics module produces mainly descriptive statistics,
the inferential statistics are still under development. We do
not have found the need for machine learning algorithms,
although interesting approaches exist and we will certainly
consider including these in the future [7]. This would also
open the framework to more extensive player modelling [8]

In conclusion, our framework covers most of the require-
ments for running biometrics analysis on playtesters. We
will soon be making it available for interested commerical
parties.

4. REFERENCES
[1] R. Mandryk. Physiological measures for game

evaluation. In K. Isbister and N. Shaffer”, editors,
Game Usability: Advice from the Experts for Advancing
the Player Experience. Morgan Kaufmann, 2008.

[2] M. Seif El-Nasr, A. Drachen, and A. Canossa, editors.
”Game Analytics: Maximizing the Value of Player
Data”. Springer, 2013.

[3] J. Wagner, F. Lingenfelser, B. Nikolaus and E. André
Social Signal Interpretation (SSI) - A Framework for
Real-time Sensing of Affective and Social Signals
KÃijnstliche Intelligenz, Springer, 2011, 25

[4] The HDF Group. The HDF5 User’s Guide, November
2012. www.hdfgroup.org/HDF5/doc/UG/index.html.

[5] B. Weber, M. Mateas, and A. Jhala. Using data mining
to model player experience. In FDG Workshop on
Evaluating Player Experience (EPEX 2011), Bordeaux,
France, 2011.

[6] P. Wittenburg, H. Brugman, A. Russel, A. Klassmann,
and H. Sloetjes. Elan: a professional framework for
multimodality research. In Proceedings of the Fifth
International Conference on Language Resources and
Evaluation, 2006. Produced by the Max Planck
Institute, tla.mpi.nl/tools/tla-tools/elan.

[7] G. N. Yannakakis, H. P. Martinez, and A. Jhala.
Towards Affective Camera Control in Games User
Modeling and User-Adapted Interaction Springer, 2010.

[8] N. Shaker, G. N. Yannakakis and J. Togelius. Towards
Player-Driven Procedural Content Generation in
Proceedings of ACM Computing Frontiers Conference,
pp. 237-240, 2012.


