
Real-time Procedural Terrain Generation Through Swarm
Behaviours

[Extended Abstract]

Angel Fernandez Cabezas
School of Computing & Mathematics

University of Derby
Derby, England

afercab@correo.ugr.es

Tommy Thompson
∗

School of Computing & Mathematics
University of Derby

Derby, UK
t.thompson@derby.ac.uk

ABSTRACT
This paper explores research in progress on Swarm Intelli-
gence related to Procedural Terrain Generation. Our aim is
to develop means to provide useful and real-time terrain de-
formation using Swarm algorithms. We feel this could prove
interesting for enhancing the experience of gameplay in some
game genres such as Real Time Strategy (RTS), simulation
or even platform games.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications & Expert Sys-
tems—Games

General Terms
Theory

Keywords
Swarm Intelligence, Procedural Terrain Generation

1. INTRODUCTION
This work is focussed on the development of Swarm Intel-
ligence. It is to be deployed in a 3D map created in C#
using the XNA framework that can be modified in real time
according to a series of parameters (i.e. height of the neig-
bour cells, distance to the point where the user has clicked
or the amount of change applied to the terrain), with the in-
tent to create useful and practical results. This is employed
with the intent that the user can modify these parameters
to impact the percentage of change applied to the terrain.

Up until now, Procedural Terrain Generation algorithms
have been static. This means that they generate a candi-
date map according to some data, but the generation is sel-
dom left in the hands of the user. The aim of this research

∗Tommy Thompson is a member of the Distributed and In-
telligent Systems Research Group (DISYS).

is to provide a different experience by allowing a player or
developer to modify the map on which they are playing in
real time by using a GUI and the aforementioned swarm
algorithms.

We feel this research could lead to interesting developments
that improve vastly the experience of playing or developing
content for videogames. Other possible uses for this research
could be developing models for tectonic simulations: using
proper physics, this research might help us understand us
better the behaviour of some terrains and the impact of their
changes on structures.

2. RELATED WORK
Work by Togelius et al. in [6] successfully used PTG for
RTS games such as Starcraft. This method used a Multi-
Objective Evolutionary Algorithm (MOEA), creating ter-
rain as a sub-element of the main goal, which is generating
a complete and playable game map that also includes posi-
tioning for gaming elements and objectives.

Their genotype modelled the standard deviations of a gaus-
sian distribution, the coordinates x and y of the mountain
peak and the height of the mountain. For genetic operators,
they use probability based on mutations and simulated bi-
nary crosses, which suggests that the genetic strings of the
descendants will look like either one of its parents or the
other. As stated before, this gives very good results with
RTS games, but because of the genotype that it uses, the
style of the features of the terrains that it generates include
soft and rounded looking peaks.

Work by Frade et al. in [2, 1] uses genetic algorithms to
create height functions. A height function is an equation
applied to the value of each vertex in a height map that
already exists, producing a new height map by doing so. In
this case the genotype is represented by a tree of operators,
and evolves by adding, removing or substituting operators
through genetic programming.

Even though they started using an interactive evolution ap-
proach, they ended up using two fitness functions: accessi-
bility measurement (good for those terrains with lots of flat
areas) and obstacle edge length measurement, which makes
sure that every player finds obstacles in the map, so the
game is challenging. By using three types of mutation for



the genotype, we end up getting a solution space that has
good exploration. Another benefit from that is that the
height function is prevented from being too long. The prob-
lem with these algorithms is that it outputs terrains that
are too flat and have predictable patterns, so we can not use
them for many types of game.

The study by Raffe et al. [4] focusses on terrain samples that
are decomposed into smaller patches which are then recom-
bined to obtain a new terrain, and for the genotype it uses a
two dimensional array of patch identification numbers. For
the crossover, the descendants duplicate the genetic struc-
ture of one of their parents, and then assign to every patch
the probability of being switched for the corresponding patch
on the other parent. For mutation, each patch is assigned
the possibility of being swapped with another one chosen
randomly.

It is relatively easy for a new user with little experience to
generate game maps by running this algorithm a couple of
times, and you can obtain a huge variety of terrains just
by mixing the samples. However, these patches limit the
exploration of the solution space, as it depends on those
that the user has input beforehand. And it can have trouble
generating terrains with shapes that have not been provided,
but there is a way to solve this just by using smaller patches.

With our work, we wish to expand the experience by hav-
ing dynamic surroundings. This could make gameplay more
appealing, so creating a dynamic courtesy of Swarm Intel-
ligence we hoped would be a good way to approach this
problem.

3. OVERVIEW OF WORK COMPLETED
In our current work we have developed a tool that can
change the shape of the terrain in real time. Only a mouse
is needed to allow the user to interact with this application,
so it is very intuitive and can be a good tool if applied to
games with a touch screen. You can use the mouse in three
diferent ways: dragging, clicking or click and drag. Each
of these methods employs a different means of deforming
terrain, with point and the algorithm spreads automatically
depending on the height of the neighbour cells or clicking in
one point and dragging to the other, which would result on
the construction of a path to the other point. Utilising all of
these against an intially flat terrain can yield results shown
in Figure 1.

Clicking the terrain using the coordinate of the mouse as
the center of a 5x5 matrix, applying changes to height to
the neighbours according to their altitude towards the point
the user has clicked. If the mouse button is held, the area of
influence of the algorithm will increase. This allows for more
customisation, we see the gradual changes to the terrain.

In our second approach, the clicking interaction, we modify
the terrain using a swarm algorithm that takes a random
walk through the terrain, modifying the height of all vertices
that the swarm comes into close contact with. The height
changes made are with respect to their neighbours. This
produces a more realistic and detailed result. Finally, the
third behaviour directs our swarm by focussing on the line
drawn from the initial click to the point where the mouse

Figure 1: Final result after applying all three terrain
deformation methods

button is released. This adopts the same process as before,
only it now directs the changes across a linear path.

3.1 Current and Future Work
Having tested these methods work successfully, we are inter-
ested in modifying the ’dragging’ methods to use geodesic
distance rather than euclidean distances. We believe that
employing geodesic distances will enable to modify the ter-
rain more realistically and by extension achieve better re-
sults. In addition, we will conduct tests with users to gain
feedback on the effectiveness of the current approach.

4. REFERENCES
[1] M. Frade, F. de Vega, and C. Cotta. Evolution of

artificial terrains for video games based on accessibility.
Applications of Evolutionary Computation, pages
90–99, 2010.

[2] M. Frade, F. Fernandéz de Vega, and C. Cotta.
Breeding terrains with genetic terrain programming:
the evolution of terrain generators. International
Journal of Computer Games Technology, 2009, 2009.

[3] T. J. Ong, R. Saunders, J. Keyser, and J. J. Leggett.
Terrain generation using genetic algorithms. In
Proceedings of the 2005 conference on Genetic and
evolutionary computation, pages 1463–1470. ACM,
2005.

[4] W. L. Raffe, F. Zambetta, and X. Li. Evolving
patch-based terrains for use in video games. In
Proceedings of the 13th annual conference on Genetic
and evolutionary computation, pages 363–370. ACM,
2011.

[5] W. L. Raffe, F. Zambetta, and X. Li. A survey of
procedural terrain generation techniques using
evolutionary algorithms. In Evolutionary Computation
(CEC), 2012 IEEE Congress on, pages 1–8. IEEE,
2012.

[6] J. Togelius, M. Preuss, and G. N. Yannakakis. Towards
multiobjective procedural map generation. In
Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, page 3. ACM, 2010.


