Tool-supported Iterative Learning of
Component-based Software Architecture for Games”

David Llanso
Dep. Ingenieria del Software e
Inteligencia Artificial
Universidad Complutense de
Madrid, Spain
llanso@fdi.ucm.es

Pedro A.
Gonzalez-Calero

Dep. Ingenieria del Software e

Inteligencia Artificial
Universidad Complutense de
Madrid, Spain
pedro@fdi.ucm.es

ABSTRACT

Students of game development at the master level usually
have a hard time becoming comfortable and proficient in ap-
plying component-based software architecture design, used
in most professional games, to their own projects. In this pa-
per we describe a teaching methodology that allows students
to very rapidly iterate through versions of simple games,
and, with the help of Rosette, a tool that facilitates the iden-
tification of components, evaluate a large number of compo-
nent distributions, accelerating the learning process.

1. INTRODUCTION

The master program on game development at Complutense
University of Madrid in Spain, established in 2004, focuses
on delivering a degree on Computer Science targeted for
game programing and development. For the last 5 years, we
taught the component-based software architecture [1] used
in most professional games nowadays, and using such an ar-
chitecture has been a requirement for our students’ capstone
projects. Nevertheless the learning of the component-based
architecture is hard and complex for even programmers [4]
and, in our experience, students at the master level usually
have a hard time becoming comfortable and proficient in the
application of the component-based software architecture.

*Spanish Ministry of Economy and Competitiveness under
grant TIN2009-13692-C03-03

Marco A. Gomez-Martin
Dep. Ingenieria del Software e
Inteligencia Artificial
Universidad Complutense de
Madrid, Spain
marcoa@fdi.ucm.es

Pedro P. Gbmez-Martin
Dep. Ingenieria del Software e
Inteligencia Artificial
Universidad Complutense de
Madrid, Spain
pedrop@fdi.ucm.es

Magy Seif EI-Nasr
College of Arts, Media and
Design and Computer and

Information Sciences

Northeastern University,
Boston, MA 02115, United
. States
m.seifel-nasr@neu.edu

Component-based software architecture deconstructs object-
oriented mechanisms in order to promote reusability by gen-
erating game entities through the composition of fine-grained
components. Although the main ideas of this approach are
usually easily grasped by a Computer Science graduate. It
often takes time and several errors to developed the skills
required to come up with a good component-based design
in terms of reusability, extensibility and lack of functionality
duplication.

For that reason, we designed a new teaching methodology
that allows students to very rapidly iterate through increas-
ingly complex versions of simple games. To test our method,
we allowed them to iterate over two simple games, one de-
veloped in Unity and the other in C+4++. This process al-
lows them to try and evaluate a large number of component
distributions, thus accelerating the learning process. This
approach is made possible thanks to Rosette, an authoring
tool we have developed to facilitate the collaboration be-
tween programmers and game designers by maintaining an
ontological view of the entities in a game and connecting it
to aggregations of components in the source code [2, 3].

2. THEMETHODOLOGY

As teachers in a master degree of videogames in the Com-
plutense University of Madrid, we face some challenges while
teaching component-based architectures [1] in the last few
years. Thus, we adopted a method that introduces Rosette
and uses it as a pedagogical tool to allow students to assim-
ilate component-based design and methodology.

We use it to put into practice a methodology where stu-
dents implement a 3D game using a component-based archi-
tecture in a guided way. After some basic explanation about
the theoretical aspects of the architecture, they were told
what components they should implement for developing the
small test-bed game, and why. We provide them with sam-
ple components, code sketches and many placeholders where



students write specific code for implementing the game.

Although students seemed to assimilate the inner work-
ings of CBA, when they were confronted with their master
project where they must implement their own videogame
nearly from scratch, they suffered a lot of difficulties trying
to distribute the functionality among components. The first
prototypes used to have both very big components with low
cohesion or very specific non configurable components. None
of them are reusable, so each new feature, kind of enemy or
change in the game design supposed a new component, usu-
ally very similar to an existing one, causing duplicity of code
(and bugs).

Our conclusion was that, although CBA fundamentals are
easy to understand, practically identifying and designing a
good component distribution is not so simple. After all,
CBA breaks in some way the object oriented programming
paradigm, so students must change their minds when de-
signing components [4].

In order to overcome the previous difficulties, we have
changed our teaching methodology. We confront students
with two small videogames where they must not just fill
in the gaps, but completely design the GO layer, identifying
entities and distributing their functionality into components.

To emulate a complete videogame development, where
game design is a moving target, students are provided with
a partial definition of each game, that is enriched in a pro-
gressive way after some iterations. Our intention is to force
the students to reevaluate their previous components dis-
tributions, trying to reuse as much components as possible
or deciding when they are forced to refactor. In this way,
we mimic the challenges students will afford during their
projects, but in a more controlled environment.

Instead of leaving students completely on their own when
developing their game, they will use Rosette, a game au-
thoring tool developed by us that facilitates the game de-
sign process and the implementation of these game designs.
Each iteration consists of the next stages:

e Students are provided with a running example of the
game they must implement at the end of the current
iteration. We could have used a prototypical game de-
sign document explaining the requested functionality.
However, those documents require some time to be an-
alyzed, and are prone to misinterpretations. A running
game accelerates the comprehension phase and avoids
problems. With the executable, students receive also
all the graphical resources that they need to implement
their own clones of the game.

e Once the requirements are assimilated, students must
focus in distributing the functionality among compo-
nents and defining the GO of the game. For this task
the students use Rosette which helps them to create
a collection of components in the first iteration or to
update this collection in subsequent iterations. In this
stage the students do not have to worry about imple-
mentation details, but rather focus on creating a better
semantic distribution.

e Finally, students use Rosette to (re)create the code
sketches, and implement the new functionalities they
added in the previous stage. As Rosette is an iter-
ative development tool, they can generate the code
fragments at any moment without losing the changes

and additions done in the source code files of previous
iterations.

We have defined the process as three stages but, during
the same iteration, students could move from the semantic
distribution designed in Rosette to the implementation stage
more than once in the case that they did not correctly specify
the domain model and component decomposition in the first
try.

As teachers, our aim with those practice sessions is teach-
ing how to distribute components, but the motivation of the
students is to create videogames. In that sense, Rosette al-
lows us to achieve the two goals because it greatly speeds
up the development of the iterations and eases the CBA
refactorization. This means that students can very quickly
test different component distributions without being worried
about the subsequent changes in the source code, because
the tedious work of rearranging it is facilitated by Rosette.
We will show later, the use of Rosette and how it give us this
possibility that has become a great mechanism for learning
(and teaching) CBA and definitely .

‘We have put into practice the ideas presented above in two
separate experiences with the same group of people. All of
them were students of our post-graduate masters in game
development at the Complutense University of Madrid, and
most of them have completed a BS in computer science be-
fore enrolling in the masters program. Of the 19 students
signed up for the study, only a few of them have prior ex-
perience developing games and none having ever created a
component distribution.

Before the study, we asked them to create a small game
using components. Specifically, in the first weeks of our
studies, we introduced the game development process using
Unity, a component-based game development platform. In-
structors guided students to build, step by step, some small
games. After that, they attended theoretical lectures about
game architecture in general, the old inheritance based im-
plementations and component based architectures.

Our experiment took place in this context, and was split
into two different experiences. The first one consists on us-
ing Unity itself to build a small game. Unity has a built-in
library with common components, so students had a collec-
tion of components to use and extend. Rosette, which has an
integrated semantic representation of all those components,
is able to generate Unity compatible C# code. Therefore,
students could use it as an external tool to model the game
ontology and components before implementing the details in
Unity.

After that, we switched to a game development from scratch,
where they had to code the entire game using C++.

3. EVALUATION

Before teaching these classes, our students knew the the-
ory of the videogame component-based architecture and they
have worked with Unity creating some prototypes in a guided

way. However, when they started working on the first videogame

they had serious difficulties dividing the features among com-
ponents. This led us to believe that the previous theoretical
and practical classes were not enough. In this section, we
will show learning results once students used Rosette in the
games mentioned in the previous section.



11 (Strongly disagree)

M 2 (Disagree)

M 3 (Neither agree nor
disagree)

4 (Agree)

M 5 (Strongly agree)

Figure 1: Statement: Rosette and the methodology,
to teach (or learn) what a component-based archi-
tecture is, is very useful

11 (Strongly disagree)

M 2 (Disagree)

i 3 (Neither agree nor
disagree)

M 4 (Agree)

M 5 (Strongly agree)

Figure 2: Statement: The iterative code generation
of Rosette is very useful when the domain is modified
because it preserves all the code implementation

First of all, we must confess that one of the things that
positively affected the teaching was the high motivation of
the students. The motivation was high due to the fact that
students were invested in developing their own games, as
opposed to previous years were they had to develop a game
based on other people’s work based on a given assignment.
We really think that this is one of the key aspects and if we
had made students work only in a semantic way, without
implementing the game, the result would have not been the
same.

To evaluate our teaching approach, we wanted to measure
the progression of the students in dividing responsibilities
among components. To do this we adopted several methods:

1. We gave students a questionnaire at the end of the
classes to gauge the usefulness of the tool as they per-
ceive it.

2. We also collected data from each iteration, including
code, the semantic domain modelled in Rosette, traces
from Rosette, etc.

The questionnaire was composed of several quantitative
and qualitative questions (in a likert scale). The Figure 1
shows that almost the 80% of the students consider that
the methodology of the classes was useful, whilst only the
16% of them considered that working in a high level point
of view (using Rosette) does not provide anything to them
and preferred to directly work with Unity scripts or C++
(they told us so in the qualitative question). Figure 2 reflect
that the majority of them (again the 80%) found it useful to
have the possibility to modify or refactorize the component
distribution from a semantic point of view without paying a
price in re-coding the functionality previously programmed

20 7
18
16
14 A
12 A

oN B O ®

It1 12 It3 It4 Its Ite 1t7

Figure 3: Number of students that finished the dif-
ferent iterations of the first game

20
18 o
16
14 4
12 4

oN B O

It1 1t2 It3 1t4 It5

Figure 4: Number of students that finished the dif-
ferent iterations of the second game

that is moved to a new component. In this case, no student
considered this feature as something undesirable.

On the other hand, we have then used the collected data to
observe the results of our methodology focusing in different
aspects. Our premise is that if the component distribution
created by students along the iterations are good enough,
they have properly learnt how the component-based archi-
tecture works. A form to measure the quality of the created
components is seeing their reusability and flexibility so, if
the components created in one iteration have been reused to
implement new entities in subsequent iterations we can infer
that they are good components. In the same way, if there
are code replicated in different components we will assume
that the distribution is not good enough due to there is a
good candidate to be a new component. We can also under-
stand that if the mistakes in early iterations are solved in
later iterations, then the student has identified the mistakes
and has learnt about them.

The first part of the study using Unity was hard for the
students, nobody was able to finish all the iterations of the
first game (Figure 3). In fact, a lot of them did not pass the
second one. 31% of the students only finished the first itera-
tion whilst 42% only reached the second one, 21% the third
and only 5% of them finished the fourth iteration. Even
worse is the fact that the component distributions were not
very good in general and they dedicated a lot of time to de-
sign the components. The little good news was that some of
them improved their distributions in the middle of an itera-
tion or when a new feature was added (but barely the 30%).
The most difficult thing for them was to find similarities
between abilities of different entities to reuse components.
Almost every student created several components that in-
cludes very similar code and functionality.



M Group 1
H Group 2
i Group 3

M Group 4

Figure 5: Groups of students with different progres-
sion and quality of their component distributions

However, when students started with the second game it
seemed that they had learnt more than we initially thought.
Figure 4 shows that there were many who finished all the
game iterations (more than the 50%) and the component
distribution in this second game, although not perfect, they
were substantially better. Students spent less time in Rosette
distributing the components and more time dealing with
C++ and the game architecture.

Besides the previous data, we have analyzed the data col-
lected from the iterations in order to infer the quality of the
component distributions the students did. To this end, we
have analyzed in each iteration the semantic domain, the
source code and the traces of Rosette. Having a glance at
the domain of an iteration, we can suppose if the GO and
component distributions seem to be good or not because
we can detect functionality that is duplicated from a se-
mantic point of view (i.e. two components have the same
attributes and messages to do the same functionality in dif-
ferent GO). However, although the view of Rosette is enough
to detect bad distributions, it is not to assure that we have
a good component collection. Consequently, we have also to
inspect the source code of the components looking for du-
plicated pieces of code that reveal possible candidates to be
new components. Finally, in the traces of Rosette we can
see distributions in the middle of an iteration and we can
see if the student refactorized its domain.

According to our data analysis, we distributed the stu-
dents in four groups (Figure 5) depending on their progres-
sions in the development and the quality of the component
distributions they did in the iterations. The students of each
group are characterized themselves by:

1. They were able to identify from the beginning the

reusable components the game design should used. These

students had no mistakes splitting the functionality in
components and, over the iterations, they just needed
to make very little improvements, adding parameters
to adjust the component behaviour.

2. They did not create a perfect component distribution
in its first attempt but as the iterations advanced, they
refactor them, finishing with a component distribution
as good as the one reached by the first group.

3. They were not able to clearly classify all the features
of the game; they identified some good components
that were later reused in subsequent iterations, but
they also missed important ones such as the movement

component that includes the code to set the position of
the entity according to its speed (a component reusable
in player, enemy ship and asteroid).

4. The distribution of these small group of students did
not pass the minimum threshold to be considered a
good distribution because of the use of big non-reusable
components or because of not having understood the
component based architecture at all.

4. CONCLUSIONSAND FUTURE WORK

In this paper we presented the tool and the method we
used for teaching component-based architectures (CBA) for
game development in a Computer Science post-graduate mas-
ter. Students are usually fluent with object-oriented design,
using hierarchies, but they need to adapt their habits to the
new architecture philosophy.

Our method consists of giving students a couple of small
games that they must implement on their own, instead of in
a step-by-step way. Although the proposed games are simple
enough, it is unrealistic to expect students will be able to
experiment with different component distributions and, at
the same time, to write all the code in a short time.

To solve this problem, we used Rosette, a graphical tool
that let the user define the semantic game domain, and pro-
vides iterative consistence checking and code generation. It
boosts the game development cycle, something very useful
for the first stages of CBA learning where component refac-
tor is quite common. Students are also motivated during the
practice sessions, because they have the opportunity not just
to learn CBA, but also build and play their evolving game.

Although students do not, obviously, become CBA ex-
perts in just 12 or 15 hours, results show that they get the
fundamentals of CBA and internalize their mechanisms in
a better way than previous students (who did not employ
Rosette and this methodology). Additionally, Rosette has
shown itself as a useful tool not just for teaching but for
game development in general; some of the students are still
using it for their capstone projects, even when CBA intro-
duction lectures ended more than a month ago.

5. REFERENCES

[1] M. Chady. Theory and practice of game object
component architecture. In Game Developers
Conference, 2009.

[2] D. Llansé, M. A. Gémez-Martin, P. P. Gémez-Martin,
and P. A. Gonzalez-Calero. Explicit domain modelling
in video games. In International Conference on the
Foundations of Digital Games (FDG), Bordeaux,
France, June 2011. ACM.

[3] D. Llansé, P. P. Gémez-Martin, M. A. Gémez-Martin,
and P. A. Gonzdlez-Calero. Iterative software design of
computer games through FCA. In Procs. of the 8th
International Conference on Concept Lattices and their
Applications (CLA), Nancy, France, October 2011.
INRIA Nancy.

[4] M. West. Evolve your hiearchy. Game Developer,
13(3):51-54, Mar. 2006.



