
Exploring Minecraft as a Conduit for

Increasing Interest in Programming
Christopher Zorn

University of Central Florida
4000 Central Florida Blvd
Orlando, FL 32816, USA

czorn@knights.ucf.edu

Chadwick Wingrave

University of Central Florida
4000 Central Florida Blvd
Orlando, FL 32816, USA

cwingrav@eecs.ucf.edu

Emiko Charbonneau

University of Central Florida
4000 Central Florida Blvd
Orlando, FL 32816, USA

miko@cs.ucf.edu

Joseph J. LaViola Jr.
University of Central Florida
4000 Central Florida Blvd
Orlando, FL 32816, USA

jjl@eecs.ucf.edu

ABSTRACT
We present an investigation of how Minecraft can be used to

promote interest in computer programming. To facilitate this

exploration, we developed CodeBlocks, a block-based

programming language used to control a virtual robot that

navigates, senses, and interacts within the game. We modeled it

after several successful graphical languages for programming

education and performed a study with non-programmers to

evaluate its ability to improve perceptions of programming and

teach non-programmers to program. A survey of current Minecraft

players was conducted to identify interest in the plugin. We found

support for our main hypothesis that the programming interest of

non-programmers improved as a result of using CodeBlocks. The

plugin has been publicly released to the Minecraft modding

community and is available to play on our public server.

Categories and Subject Descriptors

K.3.2 [Computers and Education] Computer and Information

Science Education – Computer science education; K.8.0

[Personal Computing]: General - Games;

General Terms

Design, Human Factors, Languages

Keywords

Game-based learning; Minecraft; programming education

1. INTRODUCTION
In the past decade, the number of students interested in computer

science has been decreasing [6]. Students are rarely exposed to

programming in elementary and middle school and often lack

engaging learning experiences. The potential for collaborative

constructivist learning, using games in an informal learning

approach to address learner involvement, is promising, but often

elusive. Learners quickly recognize learning games for what they

typically are: shallow, with poor stories, bad gameplay, and

artistically lacking scenery.

Figure 1. We extended the commercial video game Minecraft

with our robot programming language, CodeBlocks. It was

used to teach programming concepts and generate interest in

programming.

To address this problem, we explored how Minecraft can be used

as a means to improve interest in computer programming.

Minecraft [18], an open world style game and VGA 2011

independent game of the year awardee, is a gaming phenomenon

which paradoxically attracts the attention of mainstream gamers

with: no plot, no story, no goal, simplistic combat and pixelated

graphics. Yet, it sold more than 3.5 million copies before it was

even released. The game’s main mechanic is creative play, but

also incorporates collaboration, exploration, and adventure. In its

simplest form, it consists of pixelated 1-meter cubes (see Figure

1), but also includes tool crafting, resource gathering, survival

mode, multiplayer servers, farming, livestock, and even

programmable Boolean logic and mechanical motion. The

emphasis on personal progression and the presence of

supernormal stimuli help make Minecraft captivating [2]. It also

has an active modding community, exchanging plugins and

extending the game in new creative ways.

To improve interest and educate non-programmers, we looked to

existing successful programming education tools for inspiration.

We found several aspects that were common among the tools:

simplified language syntax, a graphical interface, and a focus on

controlling the behavior of in-game entities. Most notably, our

plugin, CodeBlocks, is modeled after Scratch [17] and

StarLogoBlocks [3].

CodeBlocks is a plugin for Minecraft that creates new ways for

players to enjoy the game; either through the experience of

programming a robot, the ability to automate in-game tasks or by

solving challenging puzzles. With CodeBlocks, we can capitalize

on the amount of time players spend in Minecraft in order to

expose a larger group of players to programming concepts and

stimulate interest in computer programming. It has a small but

functional instruction set and a structural syntax that mimics

Minecraft’s block-based gameplay. Players can quickly create

powerful programs to automate common tasks, while indirectly

learning the basics of programming.

2. RELATED WORK

2.1 Computer Programming Education
There have been several approaches through the years to improve

the learning of computer programming with games. The idea being

that the excitement and “play” involved in the game keeps the

learner in the educational process. Many programming education

games use languages with simplified syntax or visual

representations to reduce the learning curve. Additionally, they

often emphasize the use of manipulating in-game entities to

achieve specific goals. Although there has been a lot of work in

programming education, to the best of our knowledge, this is the

first time Minecraft has been used to do so.

To combat user frustration of syntax errors, particularly with

novice programmers, most educational programming languages

are visual and allow users to drag-and-drop actions and constructs

to create programs [1, 3, 5, 15, 17, 24, 27]. This reinforces

program structure and keeps the program in a runnable state,

allowing learners to test and debug all of the changes they make

with immediate feedback [22, 23].

Most educational programming systems and games focus on

defining the behavior of in-game objects, such as people or

animals; the use of animated, relatable entities in scenarios with

meaningful goals can improve learner engagement [14]. Some

systems allow learners to create sequences of actions for a robot to

perform in both creative contexts [8, 13] and puzzle contexts [1,

30] where the robot interacts and senses its environment. Other

systems allow the manipulation of many and diverse entities

within a scene. Users can create stories [5, 22], games [16, 29], or

both [17] by defining rules for entity interaction.

CodeBlocks aims to incorporate the best aspects of these systems.

Its block-based language is based upon the visual style and

program control flow of [3, 17], but represented as 3D blocks to

coincide with Minecraft’s play style. CodeBlocks can be used for

creative purposes like [5, 13] by encouraging learners to

programmatically design elaborate structures. Alternatively,

learners can use CodeBlocks to overcome challenges they face, as

in [1, 16], such as mining resources within Minecraft. While

CodeBlocks pulls from these different approaches, two major

features of CodeBlocks are: 1) that it supplements and is

motivated by current gameplay; 2) and that millions of users

already play Minecraft, greatly reducing its barriers to entry.

2.2 Game-based Learning
Games for learning are not new and have been used as a medium

for teaching many topics, including programming concepts, in a

way that engages learners [21, 26]. Today, students are proficient

consumers of visual and digital content. They prefer to learn with

inductive reasoning, and learn best with smaller, more frequent

exposure to educational content [10]. Digital games can

complement these dispositions when they are properly

constructed. Digital games should be motivating and emphasize

constructivist learning environments, where gameplay is

“experiential, active, problem-based, and collaborative” [31].

Certain components in the game are necessary for inspiring

motivation: [20]

1. the learning context should encourage curiosity;

2. learning goals should align with player interests;

3. learners should be rewarded with correct effort.

Additionally, learning environments should provide players with

balanced challenges that keep players engaged while they work on

tasks. Immersive games improve flow and lead to natural stealth

learning, which aids in knowledge transfer and active learning

[20].

CodeBlocks and Minecraft embody many of the desired

characteristics of game-based learning environments. Its gameplay

is immersive and generates a sense of ownership; players approach

the game more as a tool for creative expression, and less as a

traditional game [9]. CodeBlocks extends these characteristics,

providing players with an educational tool that aids in game

progression and rewards players for using it. Additionally, most

existing education games are developed by academics, resulting in

effective learning tools, but poorly engaging games [10]. By

modifying a popular commercial game, CodeBlocks avoids this

problem.

In addition, Minecraft is an open-ended game where players are

free to express their creativity. Placing constructivist learning into

the game immediately allows them freedom to explore ideas, solve

them, and learn from the process. For this reason, Minecraft has

been used to inspire players to be creative [32], defining

inspiration as three (motivation, knowledge, environment) of the

six (plus intelligence, personality, thinking styles) creativity

resources of the Investment Theory of Creativity [28].

3. CODEBLOCKS
CodeBlocks is a robot control programming language in Minecraft

implemented as a freely available plugin for Minecraft servers

(Available from [33]). To fit with Minecraft's play style, programs

are written by creating sequences of blocks, with each block

representing a robot instruction. Players can place and destroy

instruction blocks much like they would when they create

structures within the game. This differentiates it from another,

simultaneously developed Minecraft plugin ComputerCraft [4],

which embeds a lua-based programming language in-game, to

control a robot. This laudable plugin requires more programming

expertise to use, though demonstrates the desired power that

creative players wish to wield.

In CodeBlocks, where typical programming games have separate

programming modes, such as an IDE or text editor, CodeBlocks

players never leave the game setting, remaining immersed. A

program’s entry point is specified by a sign and it names the

program or function (see Figure 2). Blocks are placed in a line and

provide different instructions to the robot, for example to move

forward, turn right, or sense the block in front. For clarity, a

custom texture pack is used to make blocks appear with

identifiable markings or text that describes the block's purpose.

Functions are defined adjacent to the program definition and are

also named using a labeled sign. Then, to call a function, the

function call block is placed in the sequence of the program with a

sign indicating the called function. Branching is achieved with a

sensing block and a sign specifying the block type for which the

robot is checking. In this way, we have created robots that dig for

minerals, traverse mazes and solve puzzle challenges.

Figure 2. A simple program named “example” instructs the

robot to move forward, turn right and pick up a block. The

block-based instructions fit the style of Minecraft’s gameplay.

3.1 Piloting and Design Decisions
We piloted the resulting system on users from our research team

and our Minecraft server’s play-testing group. They were asked to

build simple programs while we watched and were told to speak

aloud their ideas. Overall, they liked playing with the blocks,

which was encouraging. They identified a few remaining

difficulties that were resolved in iterative changes. We created a

custom texture pack that made each block recognizable as to how

it functioned (see Figure 3). Remembering the branching direction

was problematic too, so when a sensing block was placed, we

added a green block on the ground to show the positive branch

direction and a red block to show the negative branch direction.

A few other design considerations were made. We were concerned

with the ability for players to trace program execution. We tried

different approaches and settled on stacking a block on top of each

instruction when it was being executed. As the execution traversed

the main program and recursed down functions, players could

watch each step by following the moving, extra block. To slow

down or speed up execution for debugging or other purposes, a

player could place a sign on top of the start block to set the speed

of execution. It defaulted to one block per second.

Figure 3. The texture pack demonstrates the programming

statement of each block. Row 1: Robot, Move Forward, Move

Backward, Rotate 90° Left, Rotate 90° Right, Move Vertically

Down, Move Vertically Up; Row 2: Sense, Function Call,

Build, Place Block, Pickup Block, Shoot Arrow, Harvest; Row

3: Current Action Indicator, True Branch Marker, False

Branch Marker, Destroy, Defuse, Mine in Front, Mine Below

Although this design worked well in testing, we needed to allow

CodeBlocks to be used by any Minecraft player on any server. We

made programs be defined by a name on a sign, and allowed

players to spawn a robot remotely, not just next to the program

blocks. So, users placed a robot at any desired location and issued

a command to start execution of a program. Second, we allowed

users to name functions with a sign, so programs can call

functions belonging to other programs, allowing for function reuse

and collaboration. The defining name for each function was split

into two parts: the program name it belonged to and the name of

the function. For example, two functions of a program named

Tower were Tower.createWall and Tower.createStaircase.

4. EXPERIMENT
We designed an experiment to explore three things: could non-

programmers use CodeBlocks to create programs to solve puzzles,

do interactions with CodeBlocks improve perception of

programming, and does the method of program creation affect

their interest.

To determine the effectiveness of the block approach to

programming, as well as the sufficiency of the representation, we

developed a second interface to CodeBlocks, more familiar to

programmers. This text interface allowed users to load and save

programs written in a text version of the CodeBlocks language

(see Figure 4). This was done via a webpage that wrote a file the

plugin would load when a player ran their program. The text

representation was a one to one relationship of block to function.

We were concerned with the following participant perceptions and

their change in the course of this intervention:

 overall programming interest,

 perceived programming difficulty,

 perceived programming usefulness, and

 programming enjoyment,

and explored the following interface conditions:

 Block – participants placed blocks in Minecraft to

program the robot,

 Text – participants typed text into a web page to

program the robot.

Our three hypotheses are listed in Table 1.

Table 1. We have three experiment hypotheses, centered on

CodeBlock’s ability to change non-programmers’ perceptions

to computer and robot programming.

H1 Computer and robot programming appreciation will

increase with use of CodeBlocks.

H2 The Block group will have more appreciation than

the Text group.

H3 The participant’s learning style will affect the

change in appreciation’s magnitude.

Because CodeBlocks is based on successful educational

programming languages and Minecraft is immersive and engaging

[9], we expected participant perceptions to improve regardless of

the program creation method (H1). Between the two groups, we

expected Block participants to have a larger improvement because

they don’t leave the game environment and building structures

with blocks is more exciting than entering text into a webpage

(H2). Additionally, we expected that the learning style of the

participants would impact their feelings towards programming,

with active and visual learners changing the most (H3). We used

7-point Likert surveys to measure the feelings of the participants

before and after the intervention (see Table 3). During the

experiment, participants completed the Index of Learning Styles

[11, 12], which we used to group like learners in four categories

(see Table 2) during analysis.

Table 2. Distribution of participants’ learning styles. We

looked for differences in appreciation between participants

based on their learning style.

Category 1 Active: 11, Reflective 19

Category 2 Sensing: 21, Intuitive: 9

Category 3 Visual: 24, Verbal: 6

Category 4 Sequential: 20, Global: 10

4.1 Participants and Apparatus
Thirty participants (15 male and 15 female, ages 18-51) from the

University of Central Florida were recruited. All participants were

psychology students who were required to participate in research

studies for course credit. The study was advertised on an internal

system, which was used to organize the experiment sessions. Only

one of the participants had previous knowledge of Minecraft.

None of the participants had any prior experience with

programming. We were able to balance the two condition groups

with 15 in each; however, because each group had an odd number

of participants we were unable to balance the genders within the

groups. The Block group had 8 females and 7 males, and the Text

group had 7 females and 8 males. Participants used a dual-core

desktop PC with an NVIDIA GeForce GTX 470 graphics card and

50 inch Samsung DLP 3D HDTV. They were seated

approximately three feet from the display with Minecraft playing

in full-screen mode.

4.2 Experimental Procedure and Design
We conducted a single session, between-subject intervention

where participants were individually taught how to use the system

and then solved puzzles by creating programs. During the

intervention, we introduced participants to the system, taught them

how to create programs, let them solve puzzles independently, and

challenged them to create a program related to bubble sort, a

common algorithm taught to new programmers. At various points

in the intervention, we measured their perceptions using

questionnaires.

Table 3. Participants indicated their prior interest in

programming using a 7-point scale. This was used to test all

hypotheses.

 Pre-Test Assessment Questions

Q1 I am interested in computer programming

Q2 I think computer programming is too difficult for me to

learn

Q3 It is useful to know how to program computers

Q4 Computer programming sounds fun

Q5 I am interested in robot programming

Q6 I think robot programming is too difficult for me to

learn

Q7 It is useful to know how to program robots

Q8 Robot programming sounds fun

During piloting, we found that non-programmers were lacking

sufficient knowledge of computer and robot programming to

accurately indicate their perceptions. So, at the study start, the

moderator briefly talked with the participants about computer and

robot programming so they could better respond to a pre-test

questionnaire. The moderator explained what a program is and

why they are useful. The moderator then discussed robot

programming with the participant and how it differed from

computer programming, specifically how robot programming is

often tailored for interaction between a robot and its environment.

The participants then took a pre-test containing 7-point Likert

scale statements (see Table 3) to gauge their prior interest in

programming. Then, participants completed the 40-question Index

of Learning Styles [11, 12], which we later used to determine

whether the learning style of the participant affected the outcome

of the intervention.

Table 4. Participants were given a tutorial on the basic syntax

of CodeBlocks. This enabled them to use CodeBlocks to solve

puzzle challenges.

 Tutorial Section

1 Demonstrate how to define a program

2 Demonstrate how to create a simple 3-instruction

program

3 Describe branching and how it is used

4 Complete a partial program with a branch statement

5 Demonstrate how to define functions and when to use

them; participant completes a partial program with a

function.

6 Demonstrate how to create a recursive function and

when to use it

Next, participants were guided through a 6-part tutorial (see Table

4) that explained how to create programs with the system. They

learned about the functionality of each of the blocks and the

different ways the robot could interact with Minecraft’s

environment. They were briefly taught the programming concepts

of functions, branching and recursion. The tutorial took

approximately 20 minutes.

Table 5. To become more familiar with creating programs in

CodeBlocks, participants completed 4 learning puzzles. The

solutions to the puzzles required participants to use all of the

program constructs available.

 Learning Puzzles Solution Descriptions

1 Move the robot to a specified

location

Requires a sequence of

five simple actions

2 Rotate the robot and destroy the

specified blocks

Longer sequence of

instructions with

varied actions

3 Of the blocks surrounding the

robot, destroy the Dirt blocks and

defuse the TNT blocks. The

target blocks are randomly

placed.

Define a function

containing one branch

statement and calling

the function four times

4 Move the robot to a specified

location while defusing TNT

obstacles in its path. The

destination and the location of

the obstacles are randomized.

Requires a recursive

function with a branch

statement

Next, participants completed four learning puzzles. These puzzles

increased in difficulty to challenge their understanding of

programming (see Table 5). They worked independently on the

solutions; however, the moderator answered questions as needed

so that the participants were ultimately successful. A solution for

learning puzzle 3 is show in Figure 4.

Figure 4. A diagram representation of learning puzzle 3 (see

Table 5) is shown (top left). Participants were required to

create a program that destroys Dirt blocks (brown) and

defused TNT blocks. (Right) Solutions for the same puzzle are

shown with the block version on the bottom right, and the text

version on the bottom left.

After the four learning puzzles, participants selected one of four

larger challenge puzzles and attempted a solution. This was done

to challenge participants and to determine if they were capable of

completing a difficult puzzle.

 Destroy specific blocks in a pattern

 Destroy all blocks in a given area

 Maze traversal

 Collect specific blocks along a path

In the last puzzle, the grand challenge puzzle, participants were

pushed to their limits so we could observe how they would

respond to a real computer programming problem. The grand

challenge puzzle was to implement a modified bubble sort

algorithm, which we broke into three parts for them to solve as

individual functions. Given an array of blocks consisting of two

colors (blue and yellow), participants were required to sort the

blue blocks to the right and yellow to the left. The first part had

participants sort a pair of adjacent blocks, swapping their position

if they were out of order. By moving the robot right and

recursively calling this function, one block could be pushed to the

end. The second part moved the robot along the array until it

found a blue block. Combining the two functions allowed the

robot to move a blue block from the middle of the array to the end.

Lastly, participants defined a third part that moved the robot from

the end of the array to the beginning. By repeating the process of

finding the leftmost blue block, pushing it to the end and returning

to the beginning, participants were able to group all of the blue

blocks at the end of the array.

Once the participants had successfully created a program that

sorted the blocks, it was explained to them that the algorithm they

had described in Minecraft was similar to an algorithm that would

have been explored in a traditional programming environment,

specifically bubble sort. They were then shown bubble sort, and it

was explained to them how the two algorithms were similar and

what would be needed to transform their CodeBlocks algorithm to

the Bubble Sort algorithm (i.e. a change in the comparison

function). Participants then completed a post-test questionnaire,

identical to the pre-test questions. They also completed a

subsection of the Intrinsic Motivation Inventory (IMI) [7] which

we used to measure motivation and interest. The IMI contained

sections for measuring interest, perceived competence and effort.

5. RESULTS
To test H1, we performed a Wilcoxon signed ranked test to

determine whether the perceptions of participants changed as a

result of their interaction with the system (see Table 6). As can be

seen, most perceptions did positively change as a result of the

CodeBlocks intervention, especially for computer programming.

Table 6. After using CodeBlocks, participants had changes in

their perceptions of computer programming. We see that

CodeBlocks is quite successful in changing perceptions,

especially in Computer programming. (For Condition Type

below, C=Computer Programming, R=Robot Programming,

B=Block Group and T=Text Group)

(* indicates p < 0.05; ** indicates p < 0.01)

Condition

Type

Measure Mean

Before

Mean

After

Z -

Score

CB Interest 4.20 5.33* -2.859

CB Difficulty 4.27 2.87* -3.086

CB Enjoyment 4.60 5.33** -2.299

CB Usefulness 5.33 6.07** -2.006

CT Interest 3.93 5.27* -2.829

CT Difficulty 4.53 3.07** -2.100

CT Enjoyment 4.47 5.40** -2.360

CT Usefulness 6.27 6.00** -2.000

RB Interest 4.67 5.13 -1.469

RB Difficulty 4.73 2.87* -2.748

RB Enjoyment 5.07 5.47 -0.997

RB Usefulness 4.93 5.67** -2.050

RT Interest 4.47 5.07** -2.309

RT Difficulty 4.87 3.07** -3.090

RT Enjoyment 5.27 5.67 -1.387

RT Usefulness 5.67 6.00 -1.633

For H2, although many of the changes in perception were

individually significant for a participant, we did not find any

significance between participants of the two interface groups (Text

and Block). To determine whether there were any significant

differences in prior perceptions of programming between the two

groups, we performed a Mann-Whitney test. We found that the

Text group believed prior to the intervention that robot

programming was more useful than the Block group (Z = -2.157, p

< 0.05).

For H3, we used a Mann-Whitney test to determine whether

learning styles affected programming appreciation, but found no

significance between styles. Additionally, there was no

significance in the IMI results between different learning styles or

between different interface groups.

Our results indicate that hypothesis H1 held, while H2 and H3 did

not. We observed a significant improvement in perceptions

towards both computer and robot programming in most of the

categories; however, neither the program creation method nor the

learning styles of the participants had a significant influence on

the magnitude of the improvements.

6. MINECRAFT COMMUNITY SURVEY
To identify interest in CodeBlocks among typical Minecraft

players, we created a survey based upon our study questionnaires

and advertised it online in several forums and listservs dedicated

to Minecraft. We received 43 responses in just over a week’s time.

The survey had four sections: demographics, computer and

programming familiarity, video game interest and aspects of

Minecraft they found interesting. For most of the survey, a 7-point

Likert scale was used to assess agreement with a statement, with 1

meaning ‘not very’ and 7 meaning ‘very’.

The results indicate that the Minecraft players who are active in

forums and listservs were active video game players with an

interest in programming. Most respondents were between 18-20

years old, and all but one was male. Their educational levels

varied, most likely because of the age groups. Respondents were

very comfortable using a computer, with 39 participants answering

7 and 3 answering 6. There was also a high level of interest in

programming (mean 5.95) and enjoyment of programming (mean

5.87) however the number of people currently programming in

their jobs was lower (mean 4.39), probably because many

respondents are still in school. The number having previously

studied computer science was low, with 22 having no experience,

15 some courses either in high school or college, and 2 being self-

taught. The high interest, combined with the age and education

details, indicates that Minecraft is a game that appeals to a

younger generation that is not yet in place to work in computers,

but is definitely interested. Most of them had familiarity with

some languages, especially web-based ones. HTML, Java, PHP,

and C/C++/C# were the most commonly known languages in that

order. Regarding video game interest, they varied greatly with a

mean of 26.33 hours and median of 15 hours played per week.

Participants felt overall very active (mean 6.2) and very

comfortable (mean 6.76) playing games. Finally, their interests in

Minecraft’s creative, survival, social and challenging gameplay

aspects resulted in all aspects having fairly high means. Creative

was the highest (6.31), then challenging (5.63), social (5.23) and

survival (5.11). Level of enjoyment overall was rated highly, with

a mean of 5.89 and most people considered themselves active

players (mean 4.89). We also asked several Yes-No questions

about their involvement in Minecraft. As expected, they were

heavily involved: 26 answered that they configured and ran their

own server, 23 were admins and 15 developed custom plugins.

We feel these results indicated a potentially strong interest in

CodeBlocks and computer programming in active players of

Minecraft. Because of Minecraft’s ability to foster creativity and

its existing use of programmable Boolean logic, its players seem

open to more programmatic control that CodeBlocks offers, as we

were expecting.

7. CODEBLOCKS IN THE WILD
In addition to the experiment and survey, the CodeBlocks plugin

has been freely released for download by players and server

admins through a popular plugin repository, Bukkit (bukkit.org).

We have also used the plugin in a day-long STEM education

summer camp to middle school students to interest them in

computer science.

7.1 Public Servers
We released and tracked CodeBlock’s use by other Minecraft

servers to determine what they used it for. We wanted to gauge

Minecraft player interest, their use of the plugin, whether they

could use it effectively and their opinions. It was released for 66

days. It was downloaded 319 times, and installed on 6 online

servers. 27 distinct programs were created, and robots executed

133 programs in total. An example of a program created by a

Minecraft player can be seen in Figure 5. On our website, users

made comments such as “nice work”, one stating “Absolutely

Brilliant! Minecraft needs more original mods like this.” One of

the users mentioned that they had previous programming

experience with Java, Squeak [8] and Scratch [17].

Figure 5. A program created by a player using CodeBlocks in a

public Server. The program mines resources, a task often done

by hand in Minecraft.

7.2 Middle School Summer Camp
We were involved in a STEM education summer camp at our

University, where we demonstrated CodeBlocks and our server

(our Minds of Chimera server is designed to support creative play)

to Middle School students. Students participated in groups of

approximately 25, with 10-15 of each group exploring

CodeBlocks with the remainder exploring the server. We had 40

minutes with each group, which we used to teach the students how

to use CodeBlocks and to help them create their own programs.

Student ability varied: some were avid Minecraft players and

others uninterested in video games, but most students were able to

follow along with a brief tutorial given by the author, with two

other graduate students assisting. The tutorial taught them to

create a simple program with a few instructions. On completion,

students were allowed to play independently. Most students

extended the tutorial program by adding additional instructions;

however, some students used functionality that went beyond the

tutorial, such as functions and branching. One student even

defined recursive functions that allowed her to programmatically

build a four-walled tower (see Figure 6).

At the end of each session, we gave the students a brief

questionnaire, which asked them to describe what they liked and

disliked about the system and to indicate on a 1 to 7 scale how

much they were interested in using CodeBlocks again. Given the

brief amount of time for the students to learn and use the system,

coupled with the room’s energy, we were happy that many of the

students were able to create programs and extend them on their

own. On the questionnaire, most students expressed interest in

using the system again (mean=5.55). Several students stated that

they liked mining and building with the robot, and two students

who played Minecraft liked that CodeBlocks augmented

gameplay, one stating “I loved how the [robot] can be told to do

almost anything you say to help support your needs in the game.”

Figure 6. Minecraft players used the CodeBlocks plugin on

public servers. Through instrumentation of the plugin, we

collected their programs. Here, we recreated one program

(bottom) that creates a large tower out of bricks (top).

8. DISCUSSIONS AND FUTURE WORK
Our main hypothesis (H1), that CodeBlocks improved perceptions

of programming in non-programmers, was successful. However,

there was no significant difference between the two interfaces

(H2) as we expected and, surprisingly, individual learning styles

did not affect perception change (H3). It was interesting that

computer programming perceptions improved more so than robot

programming, possibly because robot programming started higher.

This could be due to a robotics “cool-ness” factor as seen by

media and society.

Most participants visibly enjoyed creating programs to solve the

puzzles and were excited to watch the robot perform the actions

they instructed it to do. Furthermore, all participants were able to

solve all of the puzzles and left the study with an understanding of

the grand challenge and its relation to bubble sort. Surprisingly,

the program creation method did not affect the participant’s

change in perception; we thought novices would prefer the block-

based interface. This suggests that other parts of the plugin and

game are responsible for the changes, such as the visualization and

tracing of program execution, the colorful and interesting graphics

and the immersive experience provided by Minecraft’s gameplay.

Future work will be to give CodeBlocks to middle school aged

gamers to see if the blocks are an advantage there. It would be

interesting if even this group saw no impact due to the condition.

Additionally, we would like to explore CodeBlock’s use as a

teaching tool. Finally, it would be important to analyze the

transference of skills from CodeBlocks to traditional programming

environments.

In future versions of CodeBlocks we would like to expand on the

syntax of CodeBlocks and add user desired functionality such as

loops, easier program and function handling and variables. This

will be a challenge to add additional complexity yet still maintain

a simple syntax so non-programmers can easily learn to use the

system.

9. CONCLUSION
Minecraft is an exceptional game with many features that make it

an appealing environment for game-based learning. It encourages

problem-solving and creativity, and it is immersive and engaging.

We extended Minecraft with a block-based programming language

based on existing programming education tools. The design of

CodeBlocks is in line with successful principles of game-based

learning: it encourages curiosity through experimentation and

rewards players for using it to achieve in-game goals. Through a

formative evaluation, we have demonstrated CodeBlock’s ability

to improve non-programmer perceptions of programming and

teach them to program. Our survey, the public release of the

plugin, and our brief work with middle school students indicate

that current Minecraft players are interested in using CodeBlocks

to augment their gaming experience. Our findings suggest that

further use of CodeBlocks is a potential way to increase interest in

computer programming among Minecraft players and non-

programmers.

10. ACKNOWLEDGMENTS
This work is supported in part by NSF CAREER award IIS-

0845921 and NSF awards IIS-0856045 and CCF-1012056. We

would also like to thank the Minds of Chimera development team,

our power users, and the anonymous reviewers for their useful

comments and feedback.

11. REFERENCES
1. Anderson, J.J. 1985. Chipwits – bet you can’t build just one.

Creative Computing, 11:12, p. 76.

2. Astolfi, Michael T. The Evolutionary Psychology of Video

Games: The Digital Game as Supernormal Stimulus. Diss.

New York University, 2012.

3. Begel, A, and Klopfer, E. "Starlogo TNG: An introduction to

game development." Journal of E-Learning (2007).

4. ComputerCraft - http://computercraft.info, 2012

5. Cooper, S., Dann, W. and Pausch, R. 2000. Alice: a 3-D tool

for introductory programming concepts. J. Comput. Small

Coll. 15, 5, p. 107-116.

6. Cuny, J. 2012. Transforming high school computing: a call to

action. ACM Inroads 3, 2 (June 2012), 32-36.

7. Deci, E. and Ryan, R. 1985. Intrinsic motivation and self-

determination in human behavior. Plenum.

8. Ducasse, Stéphane. Squeak: Learn programming with robots.

Apress, 2005.

9. Duncan, S. Minecraft, Beyond Construction and

Survival.Well Played Journal, 1(1), 2011.

10. Eck, V. R. (2006). Digital game-based learning: It's not just

the digital natives who are restless. Educause Review 41, 16.

11. Felder, R.M., and Soloman, B.A., Index of Learning Styles,

http://www4.ncsu.edu/unity/lockers/

users/f/felder/public/ILSpage.html

12. Felder, R M and Silverman, L K. 1988. Learning and

teaching styles in engineering education. Engineering

Education, 78: 674–81

13. Howe, J. and O'Shea, T. 1978. Learning mathematics through

LOGO. SIGCUE Outlook 12, 1,,p. 2-11.

14 Lee, M.J. and Ko, A.J. "Investigating the Role of Purposeful

Goals on Novices' Engagement in a Programming Game",

IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), 2012.

15 Light-Bot. http://armorgames.com/play/2205/light-bot, 2012

16. MacLaurin, B. 2011 The design of Kodu: A Tiny Visual

Programming Language for Children on the XboX 360.

SIGPLAN-SIGACT symposium on Principles of progr.

languages, POPL, p. 241-245.

17. John Maloney, Mitchel Resnick, Natalie Rusk, Brian

Silverman, and Evelyn Eastmond. 2010. The Scratch

Programming Language and Environment. Trans. Comput.

Educ. 10, 4, Article 16 (November 2010), 15 pages.

18. Minecraft - http://minecraft.net, 2012

19. Pane, J. and Myers, B. 1996. Usability Issues in the Design

of Novice Programming Systems, Carnegie Mellon

University, School of Computer Science Technical Report

CMU-CS-96-132, August, 85 pages.

20. Paras, B., and Bizzocchi, J. (2005). Game, motivation, and

effective learning: An integrated model for educational game

design. In Design (Citeseer), pp. 1-7.

21. Prensky, M. 2003. Digital game-based learning. Computer

Entertain. 1, 1, p. 21.

22. Powers, K., Ecott, S. and Hirshfield, L. 2007. Through the

looking glass: teaching CS0 with Alice. SIGCSE Bull. 39, 1

(March 2007), p. 213-217.

23. Powers, K., Gross, P., Cooper, S., McNally, M., Goldman,

K., Proulx, V., and Carlisle, M. 2006. Tools for teaching

introductory programming: what works?. In Proceedings of

the 37th SIGCSE technical symposium on Computer science

education (SIGCSE '06).

24. Repenning, Alexander. "AgentSheets®: An interactive

simulation environment with end-user programmable agents."

Interaction (2000).

25. Sandford, R., and Ulicsak, M., Facer, K. and Rudd, T. (2006)

Teaching with Games: Using commercial off the-shelf

computer games in formal education. Bristol. Futurelab.

26. Schaffer, D. W., Squire, K. D., Halverson, R., & Gee, J. P.

2004. Video games and the future of learning. Phi Delta

appan, 87(2), 104-11.

27. Seals, Cheryl, et al. "Fun learning stagecast creator: an

exercise in minimalism and collaboration." Human Centric

Computing Languages and Environments, 2002.

Proceedings. IEEE 2002 Symposia on. IEEE, 2002.

28. Sternberg, R. J. (ed). 1999. Handbook of Creativity,

Cambridge University Press.

29. Stolee, K.T. 2011. Expressing Computer Science Concepts

Through Kodu Game Lab. Computer science education,

SIGCSE, p. 99-104.

30. Untch, R. H. 2011. Teaching Programming Using the Karel

the Robot Paradigm Realized with a Conventional Language.

Accessed December 10, 2011.

31. Whitton, N. 2007. Motivation and computer game based

learning. Proc. of ASCILITE, 1063-1067.

32. Wingrave, C., Norton, J., Ross, C., Ochoa, N., Veazanchin,

S., Charbonneau, E. and LaViola, J. 2012. Inspiring Creative

Constructivist Play. CHI WIP.

 33. CodeBlocks plugin. http://dev.bukkit.org/server-

mods/codeblocks/

