
Games for Therapy: Defining a Grammar and 
Implementation for the Recognition of Therapeutic 

Gestures 
David Maung 

The Ohio State University 
CSE Department 

395 Dreese Laboratories 
2015 Neil Avenue 

Columbus, OH 43210-1277 
+1 858 882 7211 

maung.4@osu.edu 

 
 

Lise Worthen-Chaudhari, MFA, 
MS, CCRC 

The Ohio State University 
Dept. of Physical Medicine and 

Rehabilitation 
390 W 9

th
 Avenue 

Columbus, OH 43210 

worthen-chaudhari.1@osu.edu 
 
 

Ryan J. McPherson 
The Ohio State University 

ECE Department 
205 Dreese Laboratories 

2015 Neil Avenue 
Columbus, OH 43210-1277 

mcpherson.119@osu.edu 
 
 
 

Roger Crawfis, PhD 
The Ohio State University 

CSE Department 
395 Dreese Laboratories 

2015 Neil Avenue 
Columbus, OH 43210-1277 

+1 614 292 2566 

crawfis@cse.ohio-state.edu 

 
 

Linda P. Lowes, PT, PhD 
Nationwide Children’s Hospital 

700 Children’s Drive 
Columbus, OH 43205 

linda.lowes@ 
nationwidechildrens.org 

Lynne V. Gauthier, PhD 
The Ohio State University 

Dept. of Physical Medicine and 
Rehabilitation 

390 W 9
th
 Avenue 

Columbus, OH 43210 

lynne.gauthier@osumc.edu 

 

 

Alex Borstad, PhD, PT, NCS 

The Ohio State University 

Dept. of Physical Medicine and 
Rehabilitation 

390 W 9
th
 Avenue 

Columbus, OH 43210 

alexandra.borstad@osumc.edu 

 

 

 

 

ABSTRACT 

We introduce a methodology and grammar for the description and 

development of therapeutic gestures using a natural user interface 

(NUI) device such as the Microsoft Kinect and provide some 

implementation guidelines for developing therapeutic games using 

these gestures. Gesture recognition is a widely studied area and 

the Kinect SDK provides skeletal tracking to assist in pose 

determination. However, most gesture recognition systems 

assume a rather pristine gesture. Noise in the system is filtered, 

but the underlying gesture is fairly robust. For Physical Therapy 

(PT) performed for individuals with neuromotor deficits, gestures 

need to allow for a wider spectrum of possible motion paths. For 

instance, following a stroke that results in hemiparesis, individuals 

often display patterns of motor compensation, thus altering the 

trajectories of many motor movements. This has required a 

rethinking of how gestures are defined and the development of a 

more analytical and simplistic formulation of gestures. To this 

end, this paper discusses our gesture recognition framework and 

defines a simple grammar used to extract derived measurements 

and build finite-state machines for gesture recognition that can 

more easily be controlled by knowledge experts than machine 

learning techniques. Our target is an in-home alternative of 

constraint-induced movement therapy (CI Therapy), the current 

gold standard. The results of CI Therapy are substantial, but the 

widespread application of the treatment is hindered by the costs 

and travel difficulties associated with out-patient care.   

General Terms 

Design. 

Keywords 

Therapy, Gestures, Kinect, Serious Games. 

 

1. INTRODUCTION 
Stroke is a leading cause of disability in the United States, 

affecting about 700,000 people per year.  About 50% of survivors 

become disabled with regard to arm-hand functionality [8].   A 

form of motor rehabilitation, termed constraint-induced motion 

 

 



therapy (CI Therapy), has been shown to provide improvements in 

paretic arm function and frequency of use [12], and to promote 

structural and functional brain plasticity [4]. Although viewed as 

the “gold standard” intervention by many practitioners, CI therapy 

is unavailable to most stroke survivors due to its cost, 

travel/scheduling demands, and dearth of trained providers.  

To overcome these accessibility challenges, our team is 

developing a game using the Microsoft Kinect and XNA game 

studio environment which is designed to provide a similar therapy 

in the home setting.  See Figure 1.  To the best of our knowledge, 

this is the first attempt to create a stand-alone home-based 

rehabilitation program for upper extremity hemiparesis based on 

an empirically-validated treatment. Although a few avatar-based 

virtual reality games and programs [5] have been designed for 

rehabilitation, they have not promoted critical motor learning 

elements, such as intensity of practice and carry-over of therapy 

gains to daily activities, that are being implemented here and have 

typically been of low complexity (prompting the person to reach 

out and touch virtual objects in repetitive patterns).  Furthermore, 

other robotic technologies offered to facilitate delivery of motor 

therapy post-stroke treatment have been criticized for not 

incorporating critical motor learning elements or delivering 

empirically-validated treatments [2]. Existing stroke rehabilitation 

technologies may supplement therapy effectively, but are thus 

unlikely to be successful stand-alone interventions that can be 

implemented in a home setting. 

In keeping with standard CI therapy protocol, game content is 

being designed to support three hours of game play per day for ten 

consecutive weekdays.  Our game, called Canyon Adventure, 

implements a procedurally generated river environment and a 

procedurally generated underground waterway system to provide 

many hours of playable content.  Therapy is provided by mapping 

therapeutic gestures to in-game motions and requiring these 

motions to be performed repetitively throughout the course of 

game play. 

The definition of these therapeutic gestures is a major component 

of the development effort. We needed to work closely and 

iteratively with colleagues from other disciplines, who do not 

code, but whose expertise is critical in order to design and 

implement clinically relevant movement within the context of a 

computer game. We report our solution: detection of state 

sequences describing pathologic gestures - gestures that we 

expected to change substantially over an intensive two week 

course of game play. This paper describes our programming 

framework and an XML grammar for the formulation of complex 

gestures that are suitable for therapy. We describe the 

implementation of this framework and grammar in our Canyon 

Adventure game and report initial results from play testing among 

individuals who have had a stroke.  Finally, we provide insights to 

lessons learned when attempting to define and implement a set of 

therapeutic gestures into a game.  

 

2. BACKGROUND 
Microsoft provides the Kinect for Windows SDK [10] as a 

programming toolkit for working with the Microsoft Kinect.  The 

SDK provides the ability to view video camera and depth camera 

images as well as skeletal data and provides a starting point for 

application development.  Skeletal data is represented as a set of 

20 points referred to as joints. Of the joints tracked by the SDK 

we used those we could track reliably for a person who is seated: 

bilateral pelvis, shoulders, elbows, wrists, and hands as well as the 

unilateral center points for head, center shoulder (approximately 

cervical spine), spine (approximately thoracic spine) and hip 

center (approximately lumbar spine).  For each joint, the Kinect 

SDK provides orientation in world space, hierarchical orientation, 

and position.  

To this point, gesture recognition has largely been left as an 

exercise for the programmer.  The Microsoft Kinect SDK 

provides some guidelines on the design of gestures [9]; however, 

these guidelines do not necessarily support communication about 

or formulation of complex gestures such as the therapeutic 

gestures we develop in our Canyon Adventures game. Echtler 

attempts to describe a unified gesture description language [3]; 

however, this language only considers a position in 2D or 3D 

space and was not designed with a complete skeletal frame in 

mind.  Lai discusses a mathematical model for the recognition of 

gestures without regard to their definition or implementation [7].   

Bleiweiss discusses a blending of pregenerated animations with 

player movement and gestures [1].  While there have been some 

attempts to recognize gestures by machine learning [6][11], we 

believe a heuristic method allows knowledge experts to directly 

 

 

Figure 1: Screenshots from the Canyon Adventure game.  Players 

must navigate around obstacles in the river, traverse rapids, and 

explore an underground maze.   Other game activities include 

fishing and collecting treasure chests. 



contribute to the development of gestures. For our team, we found 

that creating a language definition and corresponding XML 

definition, of therapeutic gestures and margins of error, served to 

support our development work.  

The goal of rehabilitative therapy is to improve the ability to 

perform activities of daily living, or daily tasks (e.g., opening a 

door, holding a cup of water and drinking from it, putting on 

socks and shoes).  Thus, we focused on detecting functional 

reaching movement, more specifically on upper extremity 

reaching and trunk gestures. We identified at least two main 

challenges for defining gestures with this rehabilitation 

framework in mind: 1) gestures performed during daily tasks 

range from very simple to very complex, and 2) motor function 

varies widely across the population of candidates for CI therapy.  

For example, some individuals may have limited voluntary 

control of their shoulder, elbow, and hand (e.g., are unable to 

straighten their fingers or elbow), whereas others may only lack 

fine-motor skills (i.e., finger dexterity). This suggests a need for a 

broad definition of gestures that can account for varying degrees 

of motor impairment.  Our approach to gesture definition begins 

by defining a gesture as a set of postures or positions, referred to 

as states. Each state is defined as one or more criterion and 

relevant parameters.  For a gesture to be recognized as completed, 

a user must pass through each state in succession from beginning 

to end. When a gesture is completed, a game mechanic is 

triggered. 

  

3. DEFINING A THERAPEUTIC GESTURE 
The priority movements were defined first in natural language: 

twist the body, raise the arm, tilt the head, reach across and 

behind. Then, these movements were defined in anatomic 

language:  torso rotation (bilateral), shoulder abduction, shoulder 

flexion/extension, head tilt toward shoulder, elbow extension, 

elbow raised in global space, wrist raised in global space, wrist 

cross the midline of body, wrist cross behind frontal plane of 

body. Each priority movement was then defined in biomechanical 

language that specified  

1) the reference frames (RFs) to consider,  

2) the skeletal markers to consider.,  

3) the global markers to consider.. 

4) the criterion and associated parameters for initial and 

end states per gesture.  

We considered two potential RFs: the global RF (GRF), provided 

by the camera with origin at the camera lens, and the body RF 

(BRF) with origin located within the detected body. We define the 

body RF as follows.  The positive X axis is defined as parallel to 

the vector originating at the left shoulder joint and continuing 

through the right shoulder joint.  The positive Y axis is defined as 

the vector originating at the hip center joint and passing through 

the shoulder center joint.  The positive Z axis is defined as parallel 

to the cross product of these two vectors (    ).  The hip center 

joint is the origin of the body coordinate frame. 

At its simplest form, a gesture may consist of a single state and 

would be achieved when the criterion for that state is met.   For 

example, a therapist might say, “Beginning with your arm at your 

side, move your arm sideways away from your hip, while keeping 

your arm straight.” For the individual to accomplish this gesture, 

the individual must achieve a single state whose criterion is: The 

distance between the hand and the hip is greater than 10cm.  More 

complex gestures might contain states that take many more 

criteria to define.  An example of a more complex gesture is 

stirring, as in stirring a cauldron.  To determine that a person is 

stirring, one could establish that the hand passed through a 

number of positions over time such as shown in Figure 2. 

The therapist designing the stirring gesture may decide to 

constrain the gesture further.  For example, the therapist may 

decide to constrain the elbow position in each of the above states 

to be close to the center line of the body.  Although the latter 

gesture definition may be most appropriate for some higher-

functioning individuals, people with more motor dysfunction may 

not be able to accomplish the stirring gesture when stricter criteria 

are enforced.   Our gesture definition accounts for this by allowing 

a state to consist of one or more criteria as necessary. 

4. DEFINING STATES 
A gesture state is considered to be a set of one or more criteria.  

Each criterion defines a condition which must be met.  Criteria are 

defined in detail below.  For example, if a therapist wants to 

define a gesture for elbow extension (e.g., straightening the arm), 

the major criterion for this gesture would be elbow angle.  The 

specific measurements for this criterion would be the range of 

angles that would qualify as meeting that state.  An example 

definition of this gesture could be as follows: 

 

Definition of elbow extension  

State 1: Arm contracted 
Criterion 1: Elbow angle greater than 0 degrees. 
Criterion 2: Elbow angle less than 70 degrees. 

State 2: Arm extended 
Criterion 1: Elbow angle greater than 130 degrees. 
Criterion 2: Elbow angle less than 180 degrees. 

5. CRITERIA FOR GESTURES 
 

The need for a specific mathematical definition for criteria is 

clear, but there is also a desire for simplicity.  In a perfect world, 

our gesture language would be broad enough to encompass the 

necessary gestures for therapy and no broader.  In this respect we 

 

Figure 2: Stirring gesture and the states to recognize it: 1) 

hand in front of body close, 2) hand further out and right of 

center, 3) hand further out and center, and 4) hand closer and 

left of center. 

 



have attempted to maintain a minimal definition of criteria which 

handles all of the important gesture requirement cases that the 

therapists on our team have given us to date. 

We will build our definition of criteria from the skeletal data 

provided by the Kinect for Windows SDK.  Specifically we use 

the provided joint position information, with the fundamental 

states in our grammar being based on one or more of the 

following three elements: 1) the position of a skeletal joint, 2) a 

vector between two joints, and 3) an angle defined as the angular 

measure between two vectors.   

The position of a skeletal joint may be used, for example, to detect 

that a given position is held for a set amount of time.  To 

implement this we added the hold criterion which specifies a joint, 

a margin of error, and a time duration.  To satisfy this criterion, 

the specified joint must not deviate from its average position 

further than the margin of error within the specified time.  

A vector between two joints is used, for example, to detect the 

arm raise gesture wherein the goal is to measure the distance the 

person has moved the hand from the hip. Thus we measure the 

distance between the two skeletal joints as the length of the 

resultant vector between the hip joint and the hand joint. This 

specification can be constrained (or projected) to only measure the 

distance in a single coordinate axis of a coordinate frame.  For 

example, the therapist may wish to measure how far above the 

shoulder the players are able to raise their affected hands.  In this 

case we would use the y component of the vector from the 

shoulder joint to the wrist joint. 

The angle between two vectors is the basis for much of our 

therapeutic gesture recognition. The vectors comprising an angle 

of interest may or may not involve consecutive joints.  An 

example of an angle between consecutive joints would be the 

elbow angle defined as the angle between the elbow-to-shoulder 

vector and the elbow-to-wrist vector.  An example of an angle not 

involving two consecutive joints could be an angle between the 

shoulder-center-to-hip-center vector and the shoulder-to-wrist 

vector.  We use this specific angle in our rowing gesture described 

in more detail below. This functionality requires the ability to 

query the angle between any two vectors, regardless of whether 

these are contiguous. 

For convenience we have also added all of the axes of both our 

world and body coordinate system as vectors which can be used in 

angle measurements.  These are: 

 ±world-x-axis 

 ±world-y-axis 

 ±world-z-axis 

 ±body-x-axis 

 ±body-y-axis 

 ±body-z-axis 

 

There are specific cases, such as in our rowing gesture, where we 

found it convenient to constrain an angle to a plane.  In this 

specific example, the therapists were not concerned with how 

close to the body the arm was while the person was rowing.  We 

provided this functionality by projecting the arm onto the yz plane 

and measuring the angle with respect to the y axis. In general, to 

provide for this functionality, we have added the following 

constraints which can be used with the angle criteria: xy, xz, and 

yz. 

 

It is desirable for these gestures to operate for either the left or 

right side of the body, given that motor training within the game is 

primarily administered to the hemiparetic side, which varies 

across participants.  Also, it is sometimes desirable to constrain or 

require motion in the opposite arm as well as the more affected 

arm.  Instead of explicitly labeling joints left or right, we use the 

labels primary (for the more affected arm) or secondary (for the 

less affected arm) and use a game option to select whether 

primary is the left or right side. 

 

6. GRAMMAR DEFINITION 
We define our grammar in XML as it is an easily human readable 

form that can be understood and manipulated by all participants 

across disciplines involved in the project.  The XML example in 

Appendix A is provided to aid in the discussion of the following 

grammar. 

 

6.1 <measurements> element 
The measurements element contains all the named measurements 

which are of type <angle> or <vector>.  These measurements will 

be referred to in gesture states. 

6.1.1 Attributes 
none 

 

6.2 <gestures> element 
The gestures element is a simple container contains all the named 

<gesture> elements for a given program. 

6.2.1 Attributes 
none 

6.3 <angle> element 
Specifies an angle measurement which contains exactly two 

vector elements and measures the angle between those vectors. 

6.3.1 Attributes 
name Specifies the name of the angle criterion 

6.4 <vector> element 
There are three types of vectors: 

1. A vector specified by a pair of joints. 

2. A special axis vector specified using the type attribute. 

3. The position vector which contains one joint and is the 

vector from the origin to that joint. 

6.4.1 Attributes 
name The name of the vector. 

type Specifies the type of vector.  Valid types are: 
default, world-x-axis, world-y-axis, world-z-
axis, body-x-axis, body-y-axis, body-z-axis, and 
position. 

6.5 <joint> element 
Provides a reference to a specific skeletal joint.  If the joint does 

not lie along the middle of the skeleton, you can specify whether 

it is the primary (affected side of the body) joint or secondary 

(unaffected side of the body).  You must also specify the order of 

joints in a vector, with 0 being the origin and 1 being the 

endpoint. 



6.5.1 Attributes 
skeletal-joint Specifies the Kinect skeletal joint to use.  

Valid values are ankle, knee, hip, hip-center, 
shoulder, shoulder-center, elbow, wrist, and 
head. 

side The side of the body.  Valid values are primary 
or secondary. 

order The order of the joint.  Valid values are 0 and 
1. 

6.6 <gesture> element 
Specifies a single named gesture which can be recognized.  A 

gesture must contain a set of one or more states.  States contain 

criteria. 

6.6.1 Attributes 
name The name for this gesture 

type The type of the gesture.  Valid values are 
normal and measurement. 

6.7 <state> element 
Specifies a single state within a gesture which must be satisfied.  

A state contains one or more criteria. 

6.7.1 Attributes 
name The name for this state (which can be used for 

display or debugging). 

order A numerical ordering of the gesture states.  
Valid values are non-negative integers. 

6.8 <criterion> element 
Specifies a single criterion which must be satisfied for a gesture 

state to be recognized. 

6.8.1 Attributes 
ref Name of the criteria definition which this 

criteria uses. 

component Specifies what to measure and must match 
the type of criterion being referred to.  Valid 
values are distance, x, y, or z.  Note that 
Measure is not valid for an analog vector 
gesture.  All components of the vector are 
returned to the subscriber for their use. 

plane Constrains an angle criterion to a plane.  
Valid values are xy, xz, yz, and none. 

compare Specifies how to compare the measure to 
satisfy this criterion.  Valid comparisons are 
lt (for less than), gt (for greater then), lte (for 
less than or equal to) and gte (for greater 
than or equal to), and hold. 

value Specifies the value for the comparison or the 
allowable margin of error in the case of a 
“hold” criterion.  This is a floating point 
number. 

time The amount of time for a hold gesture to be 
satisfied.  This is a floating point number. 

 

7. IMPLEMENTATION 
The grammar defined above is well suited to processing with a 

recursive descent parser.  An object tree is created from the XML 

definition where each node implements an interface which we call 

IRecognizable.  A gesture is then recognized by calling 

Recognize( SkeletalFrame skeleton ) at the gesture level. 

All gestures implement the observable design pattern.  

Measurement gestures notify their subscribers whenever the 

measurement they are tracking changes by some tolerance (which 

might be every update), while other gestures only notify their 

observers when the gesture is recognized. 

Using this framework, gesture recognition is performed using a 

finite state machine (FSM) as shown in figure 3.  The FSM starts 

in the idle state when it is inactive and transitions to the initial 

state when it becomes active.  The input is a series of skeleton 

frames containing joint positions.  Each state of the gesture 

specifies the criteria for the state to be recognized.  If the state is 

recognized, the gesture is advanced to the next gesture state.  

When the final state in the gesture is recognized, an in-game 

action is triggered, and the state returns to the initial state.  Other 

actions in the game may deactivate this gesture or take it to the 

idle state. 

To limit the amount of time allowed for a gesture to be 

recognized, a ring buffer which stores a sliding history of skeletal 

frames is used and each gesture is checked against the contents of 

the ring buffer each update cycle.  When a gesture is recognized, 

the contents of the buffer can be emptied to prevent overlapping 

gestures.  Each gesture has its own finite state machine.  During a 

particular segment of the game, several gestures can be active.  

Each of these runs their state machines in parallel. 

 

The gesture manager class is a container class for all gestures.  In 

an event driven game model the gesture manager performs the 

following operations on each update cycle. 

 

foreach gesture in the set of all currently active gestures 
{ 
 gesture.recognize( skeletalframe ) 
} 
 

  

 

Figure 3.   State machine for gesture recognition.  States 

bordered by the dashed-line are part of the gesture. 

 



In the CI Therapy initial design, we specified the following 19 

gestures: 

 Arm to Side 

 Bend Down 

 Bilateral Shoulder Flexion 

 Bilateral Wave 

 Elbow Extension 

 Elbow Raise 

 Forward Arm Raise 

 Head Side to Side 

 Reach Across 

 Reach Forward 

 Reach Up 

 Reach Up and Forward 

 Rowing 

 Saturday Night Fever (raise arm above head and reach 

for floor on opposite side of body) 

 Scoop 

 Shoulder Turn 

 Stirring 

 Sweep Left (starting with hand in lap, reach arm 

forward and to the right and sweep arm across body) 

 Sweep Right (starting with hand in lap, reach arm 

forward and to the left and sweep arm across body) 

 

8. RESULTS 
The grammar above was able to handle the definition of all of the 

gestures which we initially specified in our Canyon Adventure 

game.  Furthermore, the grammar proved adaptable in allowing us 

to modify the gestures as we tuned them for implementation. 

To date, our gestures have been tested by several relatively high-

functioning individuals who have experienced a stroke.  These 

individuals were able to successfully navigate the Canyon 

Adventures game and their gestures were successfully recognized 

on the majority of attempts.  Feedback from participants indicated 

that the gesture navigation was easy to learn.  

Incorporating input from stakeholders (e.g. people who have 

experienced a stroke) into the design process has offered valuable 

insight into the definition and placement of gestures in games.  By 

doing so, we were able to identify several situations in which 

gesture recognition would fail in the context of game play: namely 

when contiguous gestures had overlapping states.  Examples 

include: 1) gestures for which the end state of one gesture 

overlapped with the beginning state of a subsequent gesture, 2) 

gestures which were the inverse of each other (e.g., for gestures 

consisting of only two states, the beginning and end states were 

reversed), and 3) gestures which share a start state but diverge. 

Secondly, we learned that simple gesture definitions are better 

than the more complex, both in the ability to tune and the ability 

to distinguish and differentiate.  For example, if the elbow 

position is irrelevant in a raise hand gesture, it is better to code it 

as a single measurement of hand position relative to the shoulder 

without regard to the elbow position. 

Finally, participants reported that gesture-based feedback 

facilitated their successful implementation of the gestures during 

game play.  We implemented this feedback by requiring that each 

gesture expose its total number of states and current state.  Our 

current design is a feedback icon which shows a rotating dial 

which varies from zero to 100 percent in 360 degrees.  We find 

this presents the correct information for a single gesture; however 

many sections of game content allow the player to choose from 

multiple gestures.  Overcoming the challenge of providing 

accurate feedback in these sections of the game is a focus of 

future work. 

 

 

Figure 4.  Feedback icon for a bilateral wave gesture that is 70% 

complete. 

 

9. FUTURE WORK 
Our interdisciplinary team will continue to define the gestures that 

are optimal for stroke rehabilitation and to develop content and in-

game actions to promote successful implementation of these 

gestures by stakeholders.  We are also working with individuals 

who have experienced a stroke to identify the most user-friendly 

methods of providing gesture feedback within the game.  The end 

goal of this project is to provide an intuitive and engaging therapy 

for stroke survivors in a cost-effective manner.  Home delivery 

trials are expected within the next six months. 

10. ACKNOWLEDGEMENTS 
I would like to acknowledge the contributions of the Kinetic 

Therapy team from the CSE 5912 Game Capstone class in the 

autumn 2012 semester at The Ohio State University. All of these 

undergraduate students provided significant contributions to the 

Canyon Adventure game content: Juan Roman, Daniel Bybik, and 

Tristan Reichardt.  This work was supported by NSF PCORI grant 

number 60034417: “Designing a low-cost virtual reality gaming 

platform for neurorehabilitation of hemiparesis.” 

11. REFERENCES 
[1] Amit Bleiweiss, Dagan Eshar, Gershom Kutliroff, Alon 

Lerner, Yinon Oshrat, and Yaron Yanai. 2010. Enhanced 

interactive gaming by blending full-body tracking and 

gesture animation. In ACM SIGGRAPH ASIA 2010 Sketches 

(SA '10). ACM, New York, NY, USA, , Article 34 , 2 pages. 

DOI=10.1145/1899950.1899984 

http://doi.acm.org/10.1145/1899950.1899984 

[2]  Brewer B, McDowell SK, Worthen-Chaudhari L. Poststroke 

Upper Extremity Rehabilitation: A Review of Robotic 

Systems and Clinical Results. Top Stroke Rehabil;14(6):22-

44.  

[3] Echtler, Florian, Gudrun Klinker, and Andreas Butz. 

"Towards a unified gesture description language." 

Proceedings of the 13th International Conference on 

Humans and Computers. University of Aizu Press, 2010. 

[4] Gauthier LV, Taub E, Perkins C, Ortmann M, Mark VW, 

Uswatte G. Remodeling the brain: plastic structural brain 

http://doi.acm.org/10.1145/1899950.1899984


changes produced by different motor therapies after stroke. 

Stroke. 2008;39:1520-5 

[5] Jun-Da Huang. 2011. Kinerehab: a kinect-based system for 

physical rehabilitation: a pilot study for young adults with 

motor disabilities. In The proceedings of the 13th 

international ACM SIGACCESS conference on Computers 

and accessibility (ASSETS '11). ACM, New York, NY, 

USA, 319-320. DOI=10.1145/2049536.2049627 

http://doi.acm.org/10.1145/2049536.2049627 

[6] Itauma, I.I.; Kivrak, H.; Kose, H.; , "Gesture imitation using 

machine learning techniques," Signal Processing and 

Communications Applications Conference (SIU), 2012 20th , 

vol., no., pp.1-4, 18-20 April 2012 

doi: 10.1109/SIU.2012.6204822  

[7] Kam Lai; Konrad, J.; Ishwar, P.; , "A gesture-driven 

computer interface using Kinect," Image Analysis and 

Interpretation (SSIAI), 2012 IEEE Southwest Symposium on , 

vol., no., pp.185-188, 22-24 April 2012 

doi: 10.1109/SSIAI.2012.6202484 

[8] Kelly-Hayes M, Beiser A, Kase CS, Scaramucci A, 

D'Agostino RB, Wolf PA. The influence of gender and age 

on disability following ischemic stroke: the Framingham 

study. J Stroke Cerebrovasc Dis. 2003;12:119-126. 

[9] Kinect for Windows Human Interface Guidelines v1.5.0.  

Microsoft Corporation.  http://msdn.microsoft.com/en-

us/library/jj663791.aspx 

[10] Microsoft Kinect for Windows SDK.  Microsoft Corporation. 

http://msdn.microsoft.com/en-us/library/hh855347.aspx 

[11] Yale Song, David Demirdjian, and Randall Davis. 2012. 

Continuous body and hand gesture recognition for natural 

human-computer interaction. ACM Trans. Interact. Intell. 

Syst. 2, 1, Article 5 (March 2012), 28 pages. 

DOI=10.1145/2133366.2133371 

http://doi.acm.org/10.1145/2133366.2133371  

[12] Taub E, Miller NE, Novack TA, Cook EW,3rd, Fleming 

WC, Nepomuceno CS, Connell JS, Crago JE. Technique to 

improve chronic motor deficit after stroke. Arch Phys Med 

Rehabil. 1993;74:347-54. 

 

  

http://doi.acm.org/10.1145/2049536.2049627
http://msdn.microsoft.com/en-us/library/jj663791.aspx
http://msdn.microsoft.com/en-us/library/jj663791.aspx
http://msdn.microsoft.com/en-us/library/hh855347.aspx


APPENDIX A: XML EXAMPLE 
 

<root> 

  <measurements> 

    <angle name="shoulder-hand-angle"> 

      <vector type="default"> 

        <joint skeletal-joint="shoulder"                  

         side="primary" order="0"/> 

        <joint skeletal-joint="wrist"  

         side="primary" order="1"/> 

      </vector> 

      <vector type=”-body-y-axis> 

    </angle> 

    <vector name="hip-hand-vector"> 

      <joint skeletal-joint="hip" side="primary"  

       order="0"/> 

      <joint skeletal-joint="wrist" side="primary"     

       order="1"/> 

    </vector> 

    <vector name="shoulder-hand-vector"> 

      <joint skeletal-joint="shoulder"  

       side="primary" order="0"/> 

      <joint skeletal-joint="wrist" side="primary"  

       order="1"/> 

    </vector> 

    <vector name="wrist-position" type="position"> 

      <joint skeletal-joint="wrist"  

       side="primary"/> 

    </vector> 

  </measurements> 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  <gestures> 

    <gesture name="rowing"> 

      <state name="initial" order="0"> 

        <criterion ref="shoulder-hand" plane="yz"  

         compare="gt" value="45.0"/> 

        <criterion ref="shoulder-hand" plane="yz"  

         compare="lt" value="90.0"/> 

      </state> 

      <state name="middle" order="1"> 

        <criterion ref="shoulder-hand" plane="yz"  

         compare="gt" value="25.0"/> 

        <criterion ref="shoulder-hand" plane="yz"  

         compare="lt" value="45.0"/> 

      </state> 

      <state name="final" order="2"> 

        <criterion ref="shoulder-hand" plane="yz"  

         compare="gt" value="0.0"/> 

        <criterion ref="shoulder-hand" plane="yz"  

         compare="lt" value="25.0"/> 

      </state> 

    </gesture> 

    <gesture name="raise-arm-to-side"> 

      <state name="initial" order="0"> 

        <criterion ref="shoulder-hand" plane="xy"  

         compare="gt" value="0.0"/> 

        <criterion ref="shoulder-hand" plane="xy"  

         compare="lt" value="25.0"/> 

      </state> 

      <state name="middle" order="1"> 

        <criterion ref="shoulder-hand" plane="xy"  

         compare="gt" value="25.0"/> 

        <criterion ref="shoulder-hand" plane="yz"  

         compare="lt" value="45.0"/> 

            </state> 

      <state name="final" order="2"> 

        <criterion ref="shoulder-hand" plane="xy"  

         compare="gt" value="45.0"/> 

        <criterion ref="shoulder-hand" plane="xy"  

         compare="lt" value="90.0"/> 

      </state> 

    </gesture> 

    <gesture name="hold-hand-out"> 

      <state name="final" order="2"> 

        <criterion ref="hip-hand-vector"  

         component="y" compare="gt" value="5.0"/> 

        <criterion ref="shoulder-hand-vector"  

         component="y" compare="lt" value="-5.0"/> 

        <criterion ref="wrist-position"  

         compare="hold" value="2.5" time="3.0"/> 

      </state> 

    </gesture> 

  </gestures> 

</root> 


