Play-Graph: A Methodology and Visualization Approach
for the Analysis of Gameplay Data

Glnter Wallner
University of Applied Arts
Institute of Art and Technology
Vienna, Austria
guenter.wallner@uni-ak.ac.at

ABSTRACT

Instrumentation to automatically log information — so called
gameplay metrics — about the player-game interaction has
become an important tool for analyzing player behavior in
games. However, due to the usually large amount of gath-
ered data, analysis of the collected data can be challenging.
Visualizations have become a promising addition to statis-
tical techniques to explore and better understand the data.
In this paper we build upon our previous work on game-
play analysis and introduce the concept of a play-graph as a
way to formally describe and visualize gameplay data. Dif-
ference graphs are used to depict the changes between two
different datasets — a relevant but currently neglected task
in gameplay analytics. Furthermore, we address issues in
regard to the visual representation of our former prototype.
Data obtained from a puzzle game, a team-based shooter,
and a MMORPG are used to illustrate the concepts.

Categories and Subject Descriptors

K.8.0 [General]: Games; H.5.m [Software Engineering]:
Information Interfaces and PresentationMiscellaneous

General Terms

Design; Theory; Measurement.

Keywords

Gameplay Visualization, Playtesting, Play-Graph, Differ-
ence Graph, Clustering

1. INTRODUCTION

In a highly competitive market like the video games in-
dustry, having a well-polished product — not only from a
technical point of view but also from a user experience point
of view — is crucial for success. Therefore, game developers
increasingly make use of various qualitative evaluation meth-
ods, such as playtesting [13], surveys [13] or videotaping [15]

to ensure a compelling and balanced game experience. In ad-
dition, telemetry has become popular in recent years within
the game industry (e.g., [15, 23, 31]) to unobtrusevily collect
data about the player-game interaction by logging certain in-
game events (e.g., collecting an item) or metrics (e.g., level
completion times, number of deaths). In contrast to qualita-
tive data, telemetry data is objective and unbiased, i.e., not
influenced by players’ perceptions and preferences, and can
be collected in large quantities in short time periods. On
the downside, this huge amount of data also makes analysis
more challenging. As stated by Drachen and Canossa [7],
mostly basic statistical methods are used for analysis (see,
e.g., [18, 30]) which usually require certain hypotheses about
the data to be answered. Games, however, provide rich in-
teraction possibilities allowing for emergent gameplay that
is sometimes hard to anticipate for the designer beforehand.
Visual methods that allow for a more explorative data anal-
ysis are therefore a promising and increasingly important
tool for game analytics. In the last couple of years, several
visualizations to aid analysis of gameplay data have been
proposed. Sometimes they are targeted toward a specific
game (e.g., [12, 20]) or a specific genre (e.g., [10]).

In our previous work [29] we described a visualization sys-
tem which can be adopted to different games and attempted
a formal description of gameplay by viewing it as a succes-
sion of states which are visited by players over the course
of the game by performing certain actions. In this paper
we will extend and further formalize our notion of gameplay
by introducing the concept of a play-graph. Furthermore, we
address two shortcomings of our visualization system. First,
previously it was not possibly to compare different datasets,
except by creating a separate visualization for each dataset,
placing them side by side and manually looking for differ-
ences. This can be a daunting task, especially if the graphs
are large. In this paper we propose the use of difference
graphs to highlight the changes between datasets in a single
drawing. Second, the representation of clusters of nodes as
polygons with segmented filling was misleading in the for-
mer prototype as feedback indicated. We address this issue
with a redesigned cluster representation. Furthermore, we
show the applicability of our approach by using data from
three different games: Team Fortress 2 [24], DOGeometry
[27, 28], and World of Warcraft [4].

The remainder of this paper is structured as follows. In
the next section we will discuss related work. In Section 3 we
describe our approach and introduce the concept of a play-
graph. In Section 4 and Section 5 we describe two extensions
to our previous prototype. Before the paper is concluded

in Section 7 we discuss limitations and give directions for
possible future work in Section 6.

2. RELATED WORK

In recent years, visual methods for gameplay analysis
gained more and more importance which is also reflected in
the increasing amount of available literature on gameplay vi-
sualization. Perhaps the most widespread visualization tech-
nique used in the game industry are heatmaps. Generally
speaking, a heatmap is a two-dimensional map which uses
colors to reflect the density of a certain variable at particular
locations. For example, Valve Corporation used heatmaps
to depict player deaths in Half Life: Episode 2 (publicly
available at [25]) and to visualize data about firing locations
collected during the recent beta of Counter-Strike: Global
Offensive [26]. However, heatmaps usually visualize only a
single variable at a time, are non-interactive and require a
large enough sample size to be meaningful.

Therefore, other visualizations have been developed, like
Hoobler et als. [12] seminal work on analyzing behavior pat-
terns of players in Return to Castle Wolfenstein: Enemy
Territory. Miller and Crowcroft [21] instrumented World of
Wareraft to collect data about player movement, visualized
the data as point cloud and used an analytical approach to
automatically extract waypoints from the movement traces.
Self organizing maps were used by Drachen et al. [8] to iden-
tify different types of players in Tomb Raider: Underworld.

Examples of industry solutions include SkyNet [31] the
telemetry system from game developer Bio Ware which uses
among others aggregated spatial visualizations, Ubisoft’s
DNA tools [5] which also make use of different kinds of vi-
sualizations, including various charts, heatmaps and a 3D
visualization of player traces similar to the work of Dixit
and Youngblood [6], and the Unreal Master Control Pro-
gram [23] from Epic Games.

Recently, Andersen et al. [1] described a system called
Playtracer to visualize transitions through game states in
games where gameplay cannot be described in relation to the
virtual environment. As our approach it makes use of node-
link diagrams to visualize player progression. Since states
are not aggregated the resulting visualizations tend to be-
come cluttered for very large or continuous state spaces. In
a follow-up paper, Liu et al. [19] addressed this problem by
changing the definition of the states by only including cer-
tain features the analyst is currently interested in. States
sharing the same features are merged together, therefore
simplifying the resulting node-link diagram.

Visualization of graphs that evolve over time has been
addressed in the area of dynamic graph drawing, either by
using animation to depict how nodes and edges are added
or removed from a graph or by highlighting the differences
using a single drawing. For example, the GraphAEL sys-
tem by Erten et al. [9] generates difference graphs, captur-
ing the percentage change between two graphs. Nodes are
color-coded to indicate growth and decline. Similarly, Ar-
chambault [2] used a static difference graph coupled with
color-coding of edges and nodes to indicate the differences.
Graph hierarchies were used to visualize the structural dif-
ferences to reduce visual clutter if the graphs are very large.
Recently, Archambault et al. [3] conducted a user study to
evaluate the effectiveness of difference maps compared to
presenting the evolution of a dynamic graph via different in-
terfaces (e.g., animation, small multiples). Results showed

that difference maps were significantly preferred by the par-
ticipants and produced significantly fewer errors if the num-
ber of inserted or deleted edges should be determined.

3. APPROACH

Following our previous work [29] we decompose game-
play — for the purpose of analysis — into three main entities:
(1) states, (2) actions, and (3) players.

A state describes a certain configuration of the game
(game state) or of a specific entity within the game. On
which type of state to look at depends on the game. For
some games it can be advantageous to look at the overall
game state, while in other games where the game state is
composed of many different variables it can be more con-
venient to examine the states of individual entities (e.g.,
different units or the player’s avatar). However, a change
of the state of an individual entity will implicitly lead to a
change in the overall game state.

While a player is interacting with a game he is performing
different kinds of actions (e.g., shooting, jumping, using a
key) which influence the current state of the game or of a
single entity and therefore causes the state to change, i.e,
players navigate through the state space. Different players
can arrive at the same state at different points in time or a
state can even be visited by the same player multiple times.

3.1 Definitions

In [29] we adapted the concept of Juul [14], and viewed
a game as a finite state machine with a finite number of
states S and transitions between them. Essentially, a fi-
nite state machine is a directed graph, where each node
in the graph is called a state. By viewing gameplay as
a graph we have the advantage of a strong mathematical
foundation to build upon. Mathematically, such a play-
graph can be expressed as a labeled directed multigraph
G =(SA,%s,%a,f £s,la) where S = {s1,...,8,} is a set
of states (nodes), A = {a1,...,am} is a multiset of directed
actions (edges), i.e., multiple edges between the same source
and target nodes are permitted, f : A — {{u,v}: u,v € S},
Y5 is a set of node labels and ¥4 is a set of edge labels.
ls : S — Ygand €4 : A — X4 are two functions that map
states respectively actions to the sets of labels, i.e, states
and actions are associated with additional information that
makes them differentiable from other labeled states and ac-
tions (this is, for example, an important property for sub-
graph isomorphism, see also Section 6). States are associ-
ated with a set of attributes used to define a state. Actions
a = a(p,t,At,7), a : S - S, s; — s;, are triggered by a
specific player p at a specific point in time ¢. Performing an
action will cause a change of state. An action is of a certain
type 7 (e.g., shoot, jump, place object) and can, but does
not necessarily have to, have a certain duration A¢. A node
can contain another graph, thus imposing a hierarchy on the
graph. We will refer to such a node as meta-node.

3.2 Visualization

Node-link diagrams are used to visualize a play-graph®.
For this purpose we therefore obtain a two-dimensional em-

Tt should be emphasized that a play-graph is an abstract
concept to describe gameplay and is therefore independent
from its representation. It must not necessarily be visualized
as a node-link diagram but can also be depicted by other
means.

bedding of the play-graph, by either using the spatial infor-
mation associated with a state or by using multidimensional
scaling (MDS, see, e.g., [16]) in case the gameplay is more
abstract and cannot be described in relation to the virtual
environment. In short, given a matrix defining the dissimi-
larity (distances) between a set of objects, MDS attempts to
find an embedding of these objects in a way that best pre-
serves the distances. However, other algorithms for draw-
ing graphs could be used as well. The radius r of a node
in the embedding is proportional to the number of players
who visited that state at some point in time. Also, for the
purpose of visualization, multiple edges between the same
two nodes u and v (parallel edges) are merged into a single
meta-edge e™ = {(u,v) € A:u,v € S}, whose thickness in
the embedding is proportional to the number of underlying
edges. Since a play-graph is a directed graph there will be
up to two meta-edges between two nodes (from u to v and
vice versa). Both, nodes and edges are color-coded to desig-
nate their type. Players are depicted as small icons, whose
coloring reflects a certain attribute of the player (e.g., gen-
der or age). Although we are not concerned with time-based
analysis in this paper it should shortly be mentioned that
the location of the player icons in the play-graph is time-
dependent, therefore reflecting when which player arrived
at which state. An example how this feature can be used
can be found in [29], along with a thorough description of
the visualization system itself. Figure 1 gives an overview
of the main elements of the visualization.

4. DIFFERENCE GRAPH

By looking at the differences between two datasets, data
from different time periods can be compared. This allows
to analyze game changes developers make over time. For
example, if the balancing is changed or a new patch has
been released and one wants to know if these changes were
effective or not. Moreover, visualizing differences can also
be useful to compare data from players with different de-
mographics. For example, if one wants to find out if there
are differences in the play behavior between males and fe-
males or between players of different age. Yet, despite its
importance, comparing different datasets has — to our best
knowledge — been largely unexplored in gameplay analysis
and visualization. In our system we account for this issue
by looking at the difference graph between two play-graphs.

Before calculating the difference graph the absolute num-
ber of visits associated with each node in a play-graph has
to be converted to relative values. This is necessary because
comparing absolute values does not make much sense if the
datasets are based on different numbers of players. If, for
example, a dataset D, is based on fewer players than an-
other dataset D, than the differences would be skewed in
favor of Dy. Furthermore, edges of the same type with the
same start node and the same end node are merged into a
single edge @ with multiplicity m. Let us denote the set of
all G as A. Furthermore, edge labels only consist of the type
7 of the corresponding action. Please note, that we don’t
consider the players and time information associated with
an action when calculating the difference graph because it is
very likely that the datasets are based on different players.
If, for example, males and females are to be compared, there
is no natural correlation between individual players of the
two groups.

.
\
N
|
\ i |
\ . *
\ § \\ ! 1
Y \

\\) \\\ / |! |
\ ‘\“AL\§ | |

\ \ | |

\ \ \/ |
j—A \ \ |

\ I\ |

f \ |

A\ [\ |

AN | \ /

N \ /

N/ .

Figure 1: The basic elements of a play-graph. A)
nodes depicting states, B) directed edges depict-
ing actions performed by a player, C) meta-edges
(bundling multiple directed edges between the same
two nodes), D) player icons representing the time-
dependent location of the individual players.

Given two play-graphs G1 = (S1, gh ¥s,,24,) and G2 =
(S2,g2,252,2A2) with unique labels for states such that
states with the same label in both graphs correspond to each
other, we define the difference graph as G4 = G2 — G1 =
(S1US2, Ag, X, UNs,, 24, UX4,). Agis the set of all actions
a where the multiplicity mg is unequal to zero with mg being
defined as mq = ma2 /N2 —m1 /N1, where m; and mg are the
multiplicities of @ in G1 and G2 and N; and Ny are the
number of players on which the graphs are based. For each
node n the relative difference between visits to n in G; and
G is calculated as vg = v2/N2 —v1 /N1, where vi and ve are
the number of visits to n in G; and G2 respectively. Please
note, that our definition (S1US2) also includes nodes where
vg is zero. This is an important property since although a
node can vanish in the difference graph there may still be
edges going to or originating from such a node. The radius
rq of a node n in the difference graph reflects the relative
difference, more precisely 74 = Tmin + R - [Vd]|. Tmin is the
minimum radius of a node (such that a node is still visible
if its difference is zero) and R > 0 is a constant. Again, all
directed edges a between the same two nodes are merged
into a single meta-edge for visual representation.

With respect to visualization the differences are high-
lighted by using two different colors for increasing and de-
creasing parts (e.g., green for increase and red for decrease or
blue for males and pink for female players). In cases where
the particular actions and types of states are from interest,
semi-transparency is used instead of coloring to distinguish
growth and decline. The following use cases will make use
of both representation methods.

Gm‘c Gundead

Ga(orc) Ga(undead)

Figure 2: Left: Play-graphs showing migration between zones for Orc (Gor.) and Undead (Gundead) on the
World of Warcraft continent Kalimdor. Right: Difference graphs showing zones and routes more frequented

by Orc (yellow) and Undead (blue).

4.1 Use Cases

In this section we will illustrate the difference graph con-
cept by using telemetry data from World of Warcraft and
DOGeometry.

4.1.1 World of Warcraft

World of Warcraft [4] is a MMORPG developed by Bliz-
zard Entertainment. It takes place in the fantasy world of
Azeroth which is comprised of four major continents. Each
continent is further divided into smaller sections, known as
zones. Players can create their own character by choosing
from different races (e.g., Orc, Troll, ...) and different classes
(e.g., Warrior, Hunter, ...). For the examples in this paper
we use telemetry data from the World of Warcraft avatar
history dataset (WoWAH) [17]. The WoWAH dataset con-
tains information about over 91000 avatars and some of their
attributes (e.g., race, class, zone their currently reside in),
recorded in 10 minute intervals between January 2006 and
January 2009.

As a first example, the two leftmost graphs (Gor. and
Gundead) in Figure 2 show migration between zones on the
continent Kalimdor for the races Orc (100 players) and Un-
dead (147 players) on October, 21, 2008. In this example,
the states of the entities (avatars) are solely defined by the
zone, yielding one state per zone. Actions depict movements
between the zones. Let us assume we are interested in find-
ing out which zones and which routes between the zones
are more frequented by Orc or Undead. Comparing Gorc
and Gundeada manually can be cumbersome task, particu-
larly if migration is observed over a larger time period and
the graph contains many more routes. On the other hand,
computing the difference graph will automatically highlight
the differences in movement between Orc and Undead. The
difference graph is depicted twice in Figure 2, once for routes
more frequented by Orc (yellow) and Undead (blue), re-
spectively. For example, the route between Thunder Bluff
and The Barrens is mostly taken by Orc, whereas the route

from Orgrimmar to Warsong Gulch is more frequented by
Undead. Similarly, the coloring of the states reflects which
zones are preferred by one of the two races. Please keep in
mind that the difference graph shows the relative differences
and not the absolute ones.

4.1.2 DOGeometry

DOGeometry [27, 28] is an educational puzzle game about
transformation geometry. The goal is to build a path for a
dog to guide him to a veterinarian. This is accomplished by
placing a limited set of road tiles on a grid and transforming
those tiles with a limited number of transformations (trans-
lation, rotation and reflection). Puzzles can be solved with
different solutions and in some puzzles bones can be collected
if they are solved with a more complicated solution. Once
the path from the dog to the veterinarian is completed the
dog will start walking and the game continues to the next
puzzle. The player cannot directly control the dog.

For the visualizations we defined a game state as a specific
arrangement of the road tiles on the grid. MDS was used to
obtain an embedding of the graph. The dissimilarity func-
tion was chosen in such a way such that states with similar
arrangements are placed in proximity to each other.

Figure 3: Second to last level of DOGeometry with
the starting configuration (left) and a possible solu-
tion (right). The optional bones can not be collected
with this solution.

Figure 4: Left: Visualizations of data from Level 8 of DOGeometry before (G1, top) and after (G2, bottom)
modifying the level design (nodes with less than two visits are hidden). A and B depict the two possible
solutions to this level. Right: The difference graph (G2 — G1) shows the relative changes between the two
versions (nodes with less than 7.5% change are hidden). Nodes visited more often and actions performed
more frequently in G; are rendered opaque, otherwise the parts are semi-transparent. The starting state (no

road tiles placed at all) is colored orange in each graph.

The example in Figure 4 shows the difference graph be-
tween datasets of level 8. The first dataset was obtained
during an evaluation with 40 children (see [27]). The data
showed us that almost two-thirds of all children were not
able to solve this particular level and stopped playing. Based
on the visualization of this data (G in Figure 4) we changed
the number and type of transformations available in the level
to make it more easier. The second dataset was gathered
during an evaluation of the revised version with 88 chil-
dren (see [28]). The resulting graph Gs is shown at the
bottom left corner in Figure 4. A and B depict the two pos-
sible solutions for this level. However, comparing these two
graphs manually can be difficult (especially because MDS
— if applied to different datasets — does not ensure that
the same nodes are at the same positions). The difference
graph G4 shows the relative changes between G; and Ga.
In this case nodes visited more often and actions performed
more frequently in G2 are opaque, otherwise they are semi-
transparent. G4 clearly highlights that the path toward so-
lution B increased, whereas the cluttered area (responsible
for the large number of players quitting during the first eval-
uation) toward solution A decreased. Please note that the
first two moves along the path toward B did not change
much, because these moves are also the same for solution A.

As a final example, Figure 5 compares the play behav-
ior between 8- and 9-year-old players in the second to last
level (cf. Figure 3). Parts of the graph shown in red were
more frequented by 8-year-olds and greenish parts by 9-year-
olds. The states corresponding to solutions (A, B and C)
are shown in brighter colors. First of all, 8-year-olds were
much more focused to reach solution A at the bottom of

Figure 5: Graph showing the differences between
8- and 9-year-old players. Reddish parts were more
frequented by 8-year-olds and greenish parts by 9-
year-olds. States corresponding to solutions are
shown in more saturated colors. Nodes with less
than 10% change are hidden. For some nodes the
associated configuration of the grid is shown (red X
mark the location of bones).

Action

Kil_scattergun (44,44%)
Kil_flamethrower (11,11%) g
il_sniperrife (22,22%) I kil_tf_projectie_rocket (22,22%)

Figure 6: Comparison between the former (left) and revised (right) cluster representation by means of the
Team Fortress 2 map Gravelpit. In both cases the coloring of the cluster reflects the weapon usage inside it.
Different colors are used for different types of weapon (e.g., orange for sniper rifle, red for rocket launcher).

The edges show sniper rifle usage between clusters.

the graph whereas the green paths are more widespread.
By examining the states visited by the 9-year-olds we could
see that they at least tried to collect the bone located in
this level (these are the green branches located to the left
of the large red branch). However, finding a solution to col-
lect the bone seemed to be too difficult and therefore they
opted for other easier solutions (e.g., C) in the end. As can
also be seen from the graph, 9-year-olds preferred solution
C over solution A, mostly chosen by 8-year-olds. Finally,
the nodes along the red branch are larger than the green-
ish nodes, indicating that 8-year-olds needed more attempts
to find a solution (every time a player restarts the level he
starts from the beginning and is therefore visiting the same
states again).

5. CLUSTERING

Clustering of states serves two purposes: First, it groups
states close to each other and, second, it reduces the vi-
sual complexity of the graph. As described in our previous
work [29] we currently employ Quality Threshold (QT) clus-
tering [11] using the Euclidean distance between states in the
embedding as measure of distance between pairs of states.
In case MDS is used to obtain the graph embedding, this
also means that similar states (according to the dissimilarity
function used for MDS) are grouped together. For example,
for the DOGeometry graphs used in the previous section,
this would mean that states with a similar arrangement of
tiles would be grouped together. The maximum diameter of
a cluster and the minimum number of nodes per cluster can
be specified by the user.

The result of the clustering is a set of k induced sub-
graphs G; = (S, 4i), Si € S, Ai = {(u,v) € A:u,v € S;}.
Furthermore, S; NS; = () for any i # j. A cluster is there-

fore represented by a meta-node containing the respective
subgraph. Please note, that we do not demand the usual
S = Ule S;i, i.e., nodes must not necessarily belong to a
cluster in our case. Actions between states of two differ-
ent clusters S; and S; are merged into a single meta-edge
e ={(u,v) € A:u € Si,v € S;},i#j. In the same man-
ner, actions between states inside a cluster S; and a specific
state s not belonging to any cluster are combined to a meta-
edge e™ = {(u,s) € A:u € S}

In our previous implementation clusters were represented
by the convex hull of their contained states. Clusters could
be closed, in which case the contained states and edges were
not visible and the convex hull was shrunken by a certain
amount or opened in which case the contents were visible
and the convex hull had its original size. The color-coding
of a cluster polygon reflected the minimum number, maxi-
mum number or percentage distribution of state types, ac-
tion types or player attributes. In case the distribution of
an attribute should be displayed, segmented filling of the
polygon was used to reflect this distribution. Figure 6 (left)
shows an example of this representation. However, feed-
back indicated that this visual representation was mislead-
ing since the polygon size depends on the spatial spread of
the state but the color-coding reflects the frequency of a
variable. Since area and frequency are highly unlikely to be
correlated with each other this can lead to misinterpretation
of the amounts.

We therefore redesigned the cluster representation (cf.
Figure 6 (right) for an example) to address this issue. In
the closed condition clusters are now represented as a spe-
cial node of the graph. The area of the node reflects the
sum of the areas of all underlying states. This way clusters
with many states or highly visited states are larger than
clusters with only a few or less visited nodes. The coloring

of the special node resembles a pie-chart, directly showing
the percentage distribution of the attribute in question. Val-
ues between clusters can now be compared more easily since
all pie-charts are visible at once and must not need to be
accessed individually as it was the case in the previous im-
plementation (where the pie-charts were shown as tooltip
when the mouse was placed over a cluster). When the clus-
ter is open the same representation as in the previous version
is used. This way one can still examine the areal spread of
a cluster, whereas the closed circular representation makes
comparing values easier. However, clusters may not neces-
sarily be non-overlapping anymore as it was the case in the
previous representation.

Figure 6 compares the two representations exemplarily by
means of the map Gravelpit from the team-based first-person
shooter Team Fortress 2 [24]. Nodes show positions where
an entity has been killed (gray nodes) or killed another entity
(vellow nodes). Actions depict shooting with different kind
of weapons. Clustering in this scenario reveals fiercely con-
tested areas. The coloring of the clusters reflects the weapon
usage. In both screenshots the cluster located in the middle
at the bottom is open and the tooltip for the topmost right
cluster is visible. Furthermore, all edges except the ones as-
sociated with the sniper rifle (orange) are hidden. This way
it is not only possible to observe where a weapon has been
used but also where the victim was located. In this example
sniper-rifle usage concentrates on the upper part and lower
left part of the map.

Figure 7 shows another example of clustering, where the
coloring of the clusters does not reflect a certain action, but
a specific player attribute. The graph shows data from the
WoWAH dataset from January, 5, 2009 from 1199 players
who have visited the continent Northrend at that day. The
clustering reflects the distribution of the different races in
the different zones. Since the distribution is roughly the
same in each cluster — Blood Elfs (red) constitute the ma-
jority in each cluster, followed by Undead (blue) and Tauren
(orange) — we can conclude that the different races do not
have any preference toward a specific zone. Furthermore,
the graph shows migration between the city-state Dalaran
and the other zones.

6. LIMITATIONS AND FUTURE WORK

As discussed in Section 5 we currently use QT clustering
to form clusters based solely on their distance and therefore
do not take the connectivity between states into account.
Graph clustering on the other hand aims to group nodes
such that there are many edges within a group but relatively
few between them (see, e.g., [22]). In respect to a play-graph
such a clustering would focus on actions rather than states
and could therefore be an interesting alternative to explore.
Other possibilities could be to specify clusters manually or
to derive them automatically based on the level geometry.

Furthermore, clusters are currently not considered in cal-
culating the difference graph (although clustering can be
applied to the resulting difference graph). Since clusters are
very likely to be different in the two source graphs (there-
fore encompassing different subgraphs) they can not be eas-
ily subtracted from each other. However, in scenarios where
the clusters can be considered to be fixed, like in the World
of Warcraft example in Figure 7, calculating the difference
between clusters would be reasonable.

It should be mentioned, that the difference graph works

Figure 7: Play-graph for the World of Warcraft con-
tinent Northrend. The clustering reflects the per-
centage distribution of the races within the differ-
ent zones (Orc = yellow, Tauren = orange, Troll =
green, Undead = blue, Blood Elf = red) along with
migration between Dalaran and the other zones.

best if the two graphs to be compared share a large number
of nodes with the same labels. If the correspondence is weak
— like in the Team Fortress 2 example, where it is highly
unlikely that two different entities will ever be at the same
state since the position is part of the state definition — the
difference will be less significant.

We are currently working on including subgraph match-
ing into our system. Subgraph matching (or subgraph iso-
morphism) is the problem of determining if a larger graph
G = (V, E) contains a subgraph which is isomorphic to an-
other graph G’ = (V' E’), with V' CV and E' C E. This
would allow the user to look for certain patterns of play (i.e.,
sequences of actions) in the play-graph. For example, if a
developer of a fighting game is interested if players regularly
perform a specific combo (like front punch — back punch
— front kick) he could input a graph corresponding to this
combo and the visualization system would highlight all oc-
currences of it.

Finally, we are currently in the process of performing an
evaluation of the visualization with potential users.

7. CONCLUSIONS

Building upon our previous work on gameplay analysis
we introduced the concept of a play-graph as a way to for-
mally describe and decompose gameplay into states, actions
and players. In contrast to many other visualizations which
have been developed with a specific game in mind, the play-
graph formalism can be applied to different types of games.
Furthermore, we proposed the use of difference graphs to
compute the changes between two datasets. Such a differ-
ence graph highlights the areas where player activity has
risen or declined. Viewing gameplay as graph allows us to
use concepts from the rich field of graph theory and apply
them to the understanding of player behavior. One, in our
opinion, promising future direction is the use of subgraph
isomorphism algorithms to find specific patterns in the col-
lected data.

Based on feedback on our previous prototype we also re-
vised the visual representation of clusters. Instead of repre-
senting them with convex polygons, circular nodes are used
which at the same time act as pie-charts showing the per-
centage distribution of a specific attribute. The size of such
a node corresponds to the number of combined visits to all
states within a cluster rather than on the spatial spread
which proofed to be misleading. As proof of concept we ap-
plied the play-graph concept to telemetry data from three
different games.

8.
1]

REFERENCES

E. Andersen, Y.-E. Liu, E. Apter,

F. Boucher-Genesse, and Z. Popovié¢. Gameplay
analysis through state projection. In Proc. of FDG
2010, pages 1-8. ACM Press, 2010.

D. Archambault. Structural differences between two
graphs through hierarchies. In Proc. of GI 2009, pages
87-94, Toronto, Ont., Canada, Canada, 2009.
Canadian Information Processing Society.

D. Archambault, H. C. Purchase, and B. Pinaud.
Difference map readability for dynamic graphs. In
Proc. of GD 2010, pages 50—61, Berlin, Heidelberg,
2011. Springer.

Blizzard Entertainment. World of Warcraft. PC, 2004.
J. Dankoff. Game telemetry with playtest DNA on
Assassin’s Creed.
http://engineroom.ubi.com/game-telemetry-with-
playtest-dna-on-assassins-creed-part-3/,
Accessed: October, 2012.

P. N. Dixit and G. M. Youngblood. Understanding
playtest data through visual data mining in interactive
3D environments. In Proc. of CGAMES 2008, 2008.
A. Drachen and A. Canossa. Analyzing spatial user
behavior in computer games using geographic
information systems. In Proc. of MindTrek 2009,
pages 182-189. ACM Press, 2009.

A. Drachen, A. Canossa, and G. N. Yannakakis.
Player modeling using self-organization in Tomb
Raider: Underworld. In Proc. of CIG 2009, pages 1-8.
IEEE Press, 2009.

C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler,
and G. V. Yee. GraphAEL: Graph animations with
evolving layouts. In G. Liotta, editor, Graph Drawing,
volume 2912 of LNCS, pages 98-110. Springer, 2003.
A. R. Gagné, M. S. El-Nasr, and C. D. Shaw. A
deeper look at the use of telemetry for analysis of
player behavior in RTS games. In Proc. of ICEC 2011,
pages 247-257. Springer, 2011.

L. J. Heyer, S. Kruglyak, and S. Yooseph. Exploring
expression data: Identification and analysis of
coexpressed genes. Genome Research,
9(11):1106-1115, 1999.

N. Hoobler, G. Humphreys, and M. Agrawala.
Visualizing competitive behaviors in multi-user virtual
environments. In Proc. of VIS 2004, pages 163-170.
IEEE Computer Society, 2004.

K. Isbister and N. Schaffer. Game Usability:
Advancing the Player Experience. Morgan Kaufmann,
2008.

J. Juul. Introduction to game time. In

N. Wardrip-Fruin and P. Harrigan, editors, First

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]
(25]

[26]

27]

28]

29]

30]

(31]

Person: New Media as Story, Performance, and
Game, pages 131-141. First edition, 2004.

J. H. Kim, D. V. Gunn, E. Schuh, B. Phillips, R. J.
Pagulayan, and D. Wixon. Tracking real-time user
experience (TRUE): A comprehensive instrumentation
solution for complex systems. In Proc. CHI 2008,
pages 443-452. ACM Press, 2008.

J. B. Kruskal and M. Wish. Multidimensional Scaling.
Sage Publications, 1978.

Y.-T. Lee, K.-T. Chen, Y.-M. Cheng, and C.-L. Lei.
World of Warcraft avatar history dataset. In Proc. of
MMSys 11, pages 123-128. ACM Press, 2011.

C. Lewis and N. Wardrip-Fruin. Mining game
statistics from web services: a World of Warcraft
armory case study. In Proc. of FDG 2010, pages
100-107. ACM Press, 2010.

Y .-E. Liu, E. Andersen, R. Snider, S. Cooper, and

7. Popovié. Feature-based projections for effective
playtrace analysis. In Proc. of FDG 2011, pages
69-76. ACM Press, 2011.

B. Medler, M. John, and J. Lane. Data Cracker:
developing a visual game analytic tool for analyzing
online gameplay. In Proc. of CHI 2011, pages
2365—-2374. ACM Press, 2011.

J. L. Miller and J. Crowcroft. Group movement in
World of Warcraft battlegrounds. Int. J. Adv. Media
Commun., 4(4):387-404, Nov. 2010.

S. E. Schaeffer. Survey: Graph clustering. Comput.
Sci. Rev., 1(1):27-64, Aug. 2007.

D. Schoenblum. Zero to millions: Building an XLSP
for Gears of War 2. In Game Developer Conference
2010, 2010.

Valve Corporation. Team Fortress 2. PC, 2007.

Valve Corporation. Half-life 2: Episode two stats.
http://wuw.steampowered.com/status/ep2/ep2_
stats.php, Accessed: October, 2012.

Valve Corporation. The science of counter strike:
Global offensive. http://blog.counter-
strike.net/science/maps.html, Accessed: October,
2012.

G. Wallner and S. Kriglstein. Design and evaluation of
the educational game DOGeometry - a case study. In
Proc. ACE 2011, pages 14:1-14:8. ACM Press, 2011.
G. Wallner and S. Kriglstein. Dogeometry: teaching
geometry through play. In Proc. FnG 2012, FnG ’12,
pages 11-18, New York, NY, USA, 2012. ACM Press.
G. Wallner and S. Kriglstein. A spatiotemporal
visualization approach for the analysis of gameplay
data. In Proc. CHI 2012, pages 1115-1124, New York,
NY, USA, 2012. ACM Press.

D. Williams, N. Yee, and S. E. Caplan. Who plays,
how much, and why? Debunking the stereotypical
gamer profile. Journal of Computer-Mediated
Communication, 13(4):993-1018, 2008.

G. Zoeller. Development telemetry in video games
projects. In Game Developer Conference 2010, 2010.

