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ABSTRACT
The TORCS racing simulator has become a standard testbed
used in many recent reinforcement learning competitions,
where an agent must learn to drive a car around a track us-
ing a small set of task-specific features. In this paper, large,
recurrent neural networks (with over 1 million weights) are
evolved to solve a much more challenging version of the task
that instead uses only a stream of images from the driver’s
perspective as input. Evolving such large nets is made possi-
ble by representing them in the frequency domain as a set of
coefficients that are transformed into weight matrices via an
inverse Fourier-type transform. To our knowledge this is the
first attempt to tackle TORCS using vision, and successfully
evolve a neural network controllers of this size.

1. INTRODUCTION

The idea of using evolutionary computation to train artifi-
cial neural networks, or neuroevolution (NE), has now been
around for over 20 years. The main appeal of this approach
is that, because it does not rely on gradient information
(e.g. backpropagation), it can potentially harness the uni-
versal function approximation capability of neural networks
to solve reinforcement learning (RL) tasks (i.e. tasks where
there is no“teacher”providing targets or examples of correct
behavior). Instead of incrementally adjusting the synaptic
weights of a single network, the space of network parameters
is searched directly according to principles inspired by natu-
ral selection: (1) encode a population of networks as strings,
or genomes, (2) transform them into networks, (3) evaluate
them on the task, (4) generate new, hopefully better, nets
by recombining those that are most “fit”, (5) goto step 2 un-
til a solution is found. By evolving neural networks, NE can
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Figure 1: Visual TORCS environment. (a) The 1st-
person perspective used as input to the RNN con-
trollers (figure 5) to drive the car around the track
(figure 6). (b), a 3rd-person perspective of the car.

cope naturally with tasks that have continuous inputs and
outputs, and, by evolving networks with feedback connec-
tions (recurrent networks), it can tackle more general tasks
that require memory.

Early work in the field focused on evolving rather small net-
works (hundreds of weights) for RL benchmarks, and con-
trol problems with relatively few inputs/outputs. However,
as RL tasks become more challenging, the networks required
become larger, as do their genomes. The result is that scal-
ing NE to large nets (i.e. tens of thousands of weights)
is infeasible using a straightforward, direct encoding where
genes map one-to-one to network components. Therefore,
recent efforts have focused on indirect encodings [1, 4, 5, 13]
where relatively small genomes are transformed into net-
works of arbitrary size using a more complex mapping. This
approach offers the potential for evolving very large networks
efficiently, by embedding them in a low-dimensional search
space.

In previous work [3, 6, 7, 14], we presented a new indirect
encoding where network weight matrices are represented as
a set of coefficients that are transformed into weight val-
ues via an inverse Fourier-type transform, so that evolution-



ary search is conducted in the frequency-domain instead of
weight space. The basic idea is that if nearby weights in the
matrices are correlated, then this regularity can be encoded
using fewer coefficients than weights, effectively reducing the
search space dimensionality. For problems exhibiting a high-
degree of redundancy, this “compressed” approach can result
in an order of magnitude fewer free parameters and signifi-
cant speedup [7].

With this encoding, networks with over 3000 weights were
evolved to successfully control a high-dimensional version
of the Octopus Arm task [15], by searching in the space of
as few as 20 Fourier coefficients (164:1 compression ratio)
[8]. In this paper, the approach is scaled up dramatically
to networks with over 1 million weights, and applied to a
new, vision-based version of the TORCS race car driving
environment (figure 1). In the standard setup for TORCS—
used now for several years in reinforcement learning compe-
titions [9, 10, 11]—a set of features describing the state of
the car is provided to the driver. In the version used here,
the controllers do not have access to these features, but in-
stead must drive the car using only a stream of images from
the driver’s perspective; no task-specific information is pro-
vided to the controller, and the controllers must compute the
car velocity internally, via feedback (recurrent) connections,
based on the history of observed images.

To our knowledge this is the first attempt to tackle TORCS
using vision, and successfully evolve neural network con-
trollers of this size.

The next section describes the compressed network encoding
in detail. Section 3 presents the visual TORCS software
architecture. In section 4, we presented our results in the
visual TORCS domain, and discuss them in section 5.

2. COMPRESSED NETWORKS

Networks are encoded as a string or genome, g = {g1, . . . , gk},
consisting of k substrings or chromosomes of real numbers
representing Discrete Cosine Transform (DCT) coefficients.
The number of chromosomes is determined by the choice of
network architecture, Ψ, and data structures used to de-
code the genome, specified by Ω = {D1, . . . , Dk}, where
Dm, m = 1..k, is the dimensionality of the coefficient ar-
ray for chromosome m. The total number of coefficients,
C =

∑k
m=1 |gm| � N , is user-specified (for a compression

ratio of N/C, where N is the number of weights in the net-
work), and the coefficients are distributed evenly over the
chromosomes. Which frequencies should be included in the
encoding is unknown. The approach taken here restricts
the search space to band-limited neural networks where the
power spectrum of the weight matrices goes to zero above a
specified limit frequency, cm` , and chromosomes contain all
frequencies up to cm` , gm = (cm0 , . . . , c

m
` ).

Each chromosome is mapped to its coefficient array accord-
ing to Algorithm 1 (figure 2) which takes a list of array di-
mension sizes, d = (d1, . . . , dDm) and the chromosome, gm,

Figure 2: Mapping the coefficients. The cuboidal
array (top) is filled with the coefficients from chro-
mosome g according to Algorithm 1, starting at the
origin and moving to the opposite corner one sim-
plex at a time.

Algorithm 1: Coefficient mapping(g, d)

j ← 0
K ← sort(diag(d) − I)
for i = 0 to |d| − 1 +

∑|d|
n=1 dn do

l ← 0

si ← {e|
∑|d|
k=1 eξj = i}

while |si| > 0 do
ind[j] ← argmin

e∈si

∥∥e−K[l++ mod |d|]
∥∥

si ← si \ ind[j++]

for i = 0 to |ind| do
if i < |g| then

coeff array[ind[i]] ← ci
else

coeff array[ind[i]] ← 0

to create a total ordering on the array elements, eξ1,...,ξDm
.

In the first loop, the array is partitioned into (Dm− 1)-
simplexes, where each simplex, si, contains only those el-
ements e whose Cartesian coordinates, (ξ1, . . . , ξDm), sum
to integer i. The elements of simplex si are ordered in the
while loop according to their distance to the corner points,
pi (i.e. those points having exactly one non-zero coordinate;
see example points for a 3D-array in figure 2), which form
the rows of matrix K = [p1, . . . , pm]T , sorted in descending
order by their sole, non-zero dimension size. In each loop
iteration, the coordinates of the element with the smallest
Euclidean distance to the selected corner is appended to the
list ind, and removed from si. The loop terminates when si
is empty.

After all of the simplexes have been traversed, the vector
ind holds the ordered element coordinates. In the final loop,
the array is filled with the coefficients from low to high fre-
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Figure 3: Decoding the compressed networks. The figure shows the three step process involved in trans-
forming a genome of frequency-domain coefficients into a recurrent neural network. First, the genome (left)
is divided into k chromosomes, one for each of the weight matrices specified by the network architecture, Ψ.
Each chromosome is mapped, by Algorithm 1, into a coefficient array of a dimensionality specified by Ω. In
this example, an RNN with two inputs and four neurons is encoded as 8 coefficients. There are k = |Ω| = 3,
chromosomes and Ω = {3, 3, 2}. The second step is to apply the inverse DCT to each array to generate the
weight values, which are mapped into the weight matrices in the last step.

quency to the positions indicated by ind; the remaining po-
sitions are filled with zeroes. Finally, a Dm−dimensional
inverse DCT transform is applied to the array to generate
the weight values, which are mapped to their position in the
corresponding 2D weight matrix. Once the k chromosomes
have been transformed, the network is complete.

Figure 3 shows an example of the decoding procedure for
a fully-recurrent neural network (on the right) represented
by k = 3 weight matrices, one for the input layer weights,
one for the recurrent weights, and one for the bias weights.
The weights in each matrix are generated from a different
chromosome which is mapped into its own Dm-dimensional
array with the same number of elements as its corresponding
weight matrix; in the case shown, Ω = {3, 3, 2}: 3D arrays
for both the input and recurrent matrices, and a 2D array
for the bias weights.

In [7], the coefficient matrices were 2D, so that the sim-
plexes are just the secondary diagonals; starting in the top-
left corner, each diagonal is filled alternately starting from
its corners. However, if the task exhibits inherent structure
that cannot be captured by low frequencies in a 2D layout,
more compression can potentially be gained by organizing
the coefficients in higher-dimensional arrays [8].

3. VISUAL TORCS

The visual TORCS environment is based on TORCS ver-
sion 1.3.1. The simulator had to be modified in order to be
usable with vision. Figure 4 describes the software archi-
tecture schematically. At each time step during a network
evaluation, an image rendered in OpenGL is captured in the

car code (C++), and passed via UDP to the client (Java),
that contains the RNN controller. The client is wrapped
into a Java class that provides methods for setting up the
RNN weights, executing the evaluation, and returning the
fitness score. These methods are called from Mathematica
which is used to decode the compressed networks (figure 3)
and the evolutionary search.

The Java wrapper allows multiple controllers to be evaluated
in parallel in different instances of the simulator via differ-
ent UDP ports. This feature is critical for the experiments
presented below since, unlike the non-vision-based TORCS,
the costly image rendering, required for vision, cannot be
disabled. The main drawback of the current implementa-
tion is that the images are captured from the screen buffer
and, therefore, have to actually be rendered to the screen.

Other tweaks to the original TORCS include changing the
control frequency from 50 Hz to 5 Hz, and removing the 3-2-
1-GO waiting sequence from the beginning of each race. The
image passed in the UDP is encoded as a message chunk with
image prefix, followed by unsigned byte values of the image
pixels. Each image is decomposed into the HSB color space
and only the saturation (S) plane is passed in the message.

4. EXPERIMENTS

The goal of the task is to evolve a recurrent neural network
controller that can drive the car around a race track using
only vision. The challenge for the controller is not only to
interpret each static image as it is received, but also to retain
information from previous images in order to compute the
velocity of the car internally, via its feedback connections.



Figure 4: Visual TORCS software platform. The TORCS environment contains a physics simulator connected
to the car server that can, in our enhanced version, transmit images from the environment to a client that
controls the car using an RNN. The DCT coefficient genomes are evolved and decoded into RNN weights in
Mathematica and passed via a J/Link interface to the car client. Fitness is calculated in the client and sent
back to Mathematica after each simulation.

4.1 Setup
In each fitness evaluation, the car is placed at the starting
line of the track (figure 6), and its mirror image, and a race
is run for 25s of a simulated time, resulting in a maximum
of 125 time-steps at the 5Hz control frequency. At each con-
trol step (figure 5), a raw 64 × 64 pixel image, taken from
the driver’s perspective is split into three color planes (hue,
saturation and brightness). The saturation plane is passed
through Robert’s edge detector [12] and then fed into a El-
man (recurrent) neural network (SRN) with 16 × 16 = 256
fully-interconnected neurons in the hidden layer, and 3 out-
put neurons. The first two outputs, o1, o2, are averaged,
(o1 + o2)/2, to provide the steering signal, and the third
neuron, o3 controls the brake and throttle (−1 = full brake,
1 = full throttle). All neurons use sigmoidal activation func-
tions.

With this architecture, the networks have a total of 1,115,139
weights, organized into 5 weight matrices. The weights
are encoded indirectly by 200 DCT coefficients which are
mapped into 5 coefficient arrays, Ω = {4, 4, 2, 3, 1} : (1) a
4D array encodes the input weights from the 2D input image
to the 2D array of neurons in the hidden layer, so that each
weight is correlated (a) with the weights of adjacent pix-
els for the same neuron, (b) with the weights for the same
pixel for neurons that are adjacent in the 16× 16 grid, and
(c) with the weights from adjacent pixels connected to adja-
cent neurons; (2) a 4D array encodes the recurrent weights
in the hidden layer, again capturing three types of correla-
tions; (3) a 2D array encodes the hidden layer biases; (4) a
3D array encodes weights between the hidden layer and 3
output neurons; and (5) a 1D array with 3 elements encodes
the output neuron biases (see [8] for further discussion of
higher-dimensional coefficient matrices).

The coefficients are evolved using Cooperative Synapse Neu-
roEvolution (CoSyNE; [2]) algorithm with a population size
of 64, a mutation rate of 0.8, and fitness being computed by:

f = d− 3m

1000
+
vmax

5
− 100c , (1)

where d is the distance along the track axis, vmax is maxi-
mum speed, m is the cumulative damage, and c is the sum
of squares of the control signal differences, divided by the
number of control variables, 3, and the number simulation
control steps, T :

c =
1

3T

3∑
i

T∑
t

[oi(t)− oi(t− 1)]2. (2)

The maximum speed component in equation (1) forces the
controllers to accelerate and brake efficiently, while the dam-
age component favors controllers that drive safely, and c
encourages smoother driving. Fitness scores roughly corre-
spond to the distance traveled along the race track axis.

Each individual is evaluated both on the track shown in fig-
ure 6 and its mirror image to prevent the RNN from blindly
memorizing the track without using the visual input (i.e.
evolution can find weights which implement a dynamical
system that drives the track from the same initial condi-
tions, even with no input). The original track starts with a
left turn, while the mirrored track starts with a right turn,
forcing the network to use the visual input to distinguish be-
tween tracks. The fitness is the minimum of the two track
scores.

4.2 Results
Table 1 compares the distance travelled and maximum speed
of the visual RNN controller with that of other, hard-coded
controllers that come with the TORCS package. The per-
formance of the vision-based controller is similar to that of
the other controllers which enjoy access to the full set of



Figure 5: Visual TORCS network controller pipeline. At each time-step a raw 64×64 pixel image, taken from
the driver’s perspective, is split into three plane (hue, saturation and brightness). The saturation plane is
then passed through Robert’s edge detector [12] and then fed into the 16×16=256 recurrent neurons of the
controller network, which then outputs the three driving commands.

Figure 6: Training race track. The controllers were
evolved using a track of length of 714.16m and width
of 10m, that consists of straight segments of length
50 and 100m and curves with a radius of 25m. The
car starts at the bottom (start line) and has to drive
counter-clockwise. The track boundary is 14m wide

controller d [m] vmax [km/h]

olethros 570 147
bt 613 141
berniw 624 149
tita 657 150
inferno 682 150

visual RNN 625 144

Table 1: Maximum distance, d, in meters and max-
imum speed, vmax, in kilometers per hour achieved
by the selected hard-coded controllers compared to
the visual RNN controller.

pre-processed TORCS features, such as forward and lateral
speed, angle to the track axis, position on the track, distance
to the track side, etc.

Figure 7 compares the learning curve for the compressed net-
works (upper curve), and a typical evolutionary run (lower
curve) where the network is evolved directly in weight space,
i.e. using chromosomes with 1,115,139 genes, one for each
weight, instead of 200 coefficient genes. Direct evolution
makes little progress as each of the weights has to be set in-
dividually, without being explicitly constrained by the values
of other weights in their matrix neighborhood, as is the case
for the compressed encoding.

As discussed above, the controllers were evaluated on two
tracks to prevent them from simply “memorizing” a single



sequence of curves. In the initial stages of evolution, a sub-
optimal strategy is to just drive straight on both tracks ig-
noring the first curve, and crashing into the barrier. This is a
simple behavior, requiring no vision that produces relatively
high fitness, and therefore represents local minima in the fit-
ness landscape. This can be seen in the flat portion of the
curve until generation 118, when the fitness jumps from 140
to 190, as the controller learns to turn both left and right.
Gradually, the controllers start to distinguish between the
two tracks as they develop useful visual feature detectors.
From then on the evolutionary search refines the control to
optimize acceleration and braking through the curves and
straight sections.

5. DISCUSSION

While preliminary, the results presented above show that it
is possible to evolve neural controllers on an unprecedented
scale. The compressed network encoding reduces the search
space dimensionality by exploiting the inherent regularity in
the environment. Since, as with most natural images, the
pixels in a given neighborhood tend to have correlated val-
ues, searching for each weight independently is overkill. Us-
ing fewer coefficients than weights sacrifices some expressive
power (some networks can no longer be represented), but
constrains the search to the subspace of lower complexity—
but still sufficiently powerful—networks, thereby reducing
the search space dimensionality by, e.g. a factor of more
than 5000 for the driver networks evolved here.

Figure 8 shows the five weight matrices of a typical RNN
controller evolved for the visual TORCS task. Had this net-
work been evolved in weight space, the matrices would look
like noise, with no apparent structure. Here, however, the
constraints imposed by using a Fourier basis of just 200 co-
efficients means that the matrices exhibit clear regularity.

The (16×64) blocking seen in the input and recurrent arrays
is due to the use of 4D coefficient arrays. So, for example,
take the upper-left block in the figure inset, which is also
the upper-left block of the entire input matrix. This block
represents the weight values of the first row of 16 neurons
for the first row of 64 pixels in the input image. The next
block to the right corresponds to the weights for the second
row in the image for the same set of neurons, which, given
the similarity between any two adjacent rows in the image,
are only slightly different. As we move left-to-right in the
matrix (i.e. moving through the input image from top-to-
bottom), the weights change smoothly; as they do when we
move along a column of blocks in the matrix: each group
of 16 neurons selects slightly different features from a given
row in the input image.

Further experiments are needed to compare the approach
with other indirect or generative encodings such as Hyper-
NEAT [1]; not only to evaluate the relative efficiency of each
algorithm, but also to understand how the methods differ in
the type of solutions they produce. Part of that comparison
should involve testing the controllers in different conditions

Figure 7: Learning curve. Typical fitness evolu-
tion of a compressed (upper curve) and directly en-
coded (lower curve) controller during 1000 genera-
tions. The compressed controller escapes from the
local minima at generation 118, but the directly en-
coded network never learns to distinguish between
left and right curve from the visual features.

from those under which they were evolved (e.g. on different
tracks) to measure the degree to which the ability to gen-
eralize benefits from the low-complexity representation, as
was shown in [8].

The compressed network encoding used here assumes band-
limited networks, where the matrices can contain all frequen-
cies up to a predefined limit frequency. For networks with as
many weights as those used for visual TORCS, this may not
be the best scheme as the limit frequency has to be chosen
by the user, and if some specific high frequency is needed to
solve the task, then all lower frequencies must be searched as
well. A potentially more tractable approach might be Gener-
alized Compressed Network Search (GNCS; [14]) which uses
a messy GA to simultaneously determine which arbitrary
subset of frequencies should be used as well as the value at
each of those frequencies. Our initial work with this method
has been promising.
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