
 

 

Optimal Cover Placement Against Static Enemy Positions 
Yinxuan Shi 

The Ohio State University 
2015 Neil Ave 

Columbus, OH 43210 

shi.217@osu.edu 
 

Roger Crawfis 
The Ohio State University 

2015 Neil Ave 
Columbus, OH 43210 

crawfis@cse.ohio-state.edu 
 

 

(a) 

 

(b) 

 

(c) 

Figure 1: An arbitrary room with different cover constraints (a) Possible optimal path from A to B when there is no cover, (b and c) optimal paths with 
different amounts and distributions of cover. 

ABSTRACT 

With the popularity of first-person shooter (FPS) games and role-

playing games (RPG), procedurally generated levels are a 

growing topic of interest in games research.  Level design for FPS 

games aimed at presenting interesting gameplay, involves map 

generation as well as object and resource placement. Existing 

techniques mainly focus on map generation.  The placement of 

objects or debris, in which a player can take momentary cover, as 

well as the locations of hardened enemy positions, greatly impacts 

the gameplay and the strategy a player may take towards 

progressing through the game. We propose the damage function to 

encode the flux of damage at every point in space throughout the 

level. We work under the premise that there exists a path that is 

optimal in some sense through this damage field (i.e., there exists 

a path that would inflict the least amount of damage on the 

player). We describe how to create a damage function under 

several use cases and compute this optimal path. Every 

configuration of enemy locations and cover elements potentially 

creates a different damage function and hence a different optimal 

path. We examine various metrics that may be used to compare 

one configuration to another. Using this framework we are able to 

search for optimal covers under various metrics.  

Categories and Subject Descriptors 

K.8.0 [Personal Computing]: Games 

Keywords 

Game design, level design, procedural content, player experience, 

first person shooter game (FPS). 

1. INTRODUCTION 
An FPS game typically contains intense combat where a player 

engages hostile targets using melee or ranged weapon through 

gameplay. Most commercially released FPS games are separated 

into multiple areas or maps, called levels. Level design can make 

the difference between a game that is repetitively boring or 

immersive fun [1].   

Level design not only includes the map or navigable area 

generation, but object or resource placement as well. Unlike 

multi-player FPS games (e.g. Halo 4 [2] and Unreal Tournament 

3 [3]), single player FPS games (e.g. Deus Ex [4], Dishonored [5]) 

usually have more emphasis on taking cover. As mentioned by 

Rogers [6], taking cover can be viewed as a combat element in 

game and is one of the basic game mechanics [6] in a single 

player FPS game, cover placement has a significant impact on the 

level design.  

Consider the scenarios depicted in Figure 1, where the player 

starts at position A and has a goal to make it to position B alive. In 

the absence of cover or no cover near the player, the player will 

likely take a straight line to his/her destination. This will result in 

an intense game experience where the player has to run and gun, 

also known as ‘shmup’ [8]. However, in Figures 1(b) and (c), 

when provided with cover, he/she may take a safe or stealthy 

route to the destination, also known as ‘stop and pop’, which 

requires some strategy.  

When taking a closer look at Figure 1(c), the player’s path may 

consist of two elements: hiding in a cover location or running to 

the next best cover location/destination. When the player is 

moving from one cover location to another cover location, he/she 

may have to run and gun. With a good cover location placement, 

the player can experience different styles of game play, which 

adds variety to the game. 

 



 

 

Pacing, also known as flow, is a concept that describes the 

player’s perception of a game level [9]. A well-paced level 

provides moments of action/peaks interjected with periods of 

calm/troughs. Most commercial FPS games, like Call of Duty: 

Black Ops II [10], etc. involve varying pace within the same level. 

Being in a trough for too long will lead to tedious gameplay and 

lack of excitement, while remaining in peaks for too long will 

result in desensitizing a player and repetitive or boring action. 

Many times, before a “boss fight”, the player will have the 

opportunity to rest and/or acquire some power-ups. Game 

designers may specifically design a level to create a flow of the 

game, where the player feels enjoyment and control in an autotelic 

activity [11].  

Numerous techniques have been proposed for level design of FPS 

games [12], many of which are geared towards procedural map 

generation. There is relatively little study on cover placement. It 

mainly relies on designer to manually tweak game assets, even 

though the cover placement can be crucial to the flow of a game. 

In actual level design, some consideration is given to the 

architecture feasibility and aesthetics. E.g. for some game level 

inside a building that is similar to Parthenon Temple, where 

several pillars are used as cover, the designer has to keep these 

pillars symmetric rather than place them based on gameplay.  

Even for an outdoor level, it is a difficult task for game designers 

to come up with a configuration of cover that optimizes gameplay 

due to limited time and play testing devoted to the large space of 

possible configurations. 

With this in mind, our research goal is to develop a method to 

generate optimal cover for FPS style games. In order to achieve 

this, we examine several problems. First, we examine the problem 

of determining optimal paths given a cover and an enemy (NPC) 

distribution with behaviors. Secondly, we examine how the 

placement of cover items affects the optimal path and develop a 

framework for searching for an optimal cover. Finally, we 

examine how designers can best use this framework by specifying 

a desired flow that the cover should optimize towards. There is a 

duality between optimizing the cover for a fixed NPC distribution 

and optimizing the NPC distribution for a fixed cover. This paper 

will focus on the former, but can easily support the latter. 

The remainder of the paper is organized as follows: Section 2 

outlines related work. In section 3, we develop a theoretical 

framework for paths, cover distributions and enemy distributions. 

In section 4, implementation details of our approach to creating 

possible candidate covers and selecting the optimal cover is 

discussed. Then in section 5, an analysis of our approach is 

provided along with examples and use cases that show the 

advantages and flexibility of our approach. 

2. Related Work 
Procedural content generation for game levels lowers the cost for 

building FPS games and provides nearly infinite replay value for 

the player. Hence, procedurally generated FPS game levels have 

been a growing topic in game research.  

2.1 Level Design 
Several level generation techniques have been developed. Guttler 

and Johansson [13] introduced the spatial principles of 

multiplayer FPS level design associated with a Collision Point 

where teams confront each other and a Tactical Choice by which 

the team and player may seek to perform the collision in the best 

possible way. They provide the idea of using rectangular areas as 

cover location in tactical planning. However, since it lacks actual 

formulation and solution to the problem, it cannot be applied in 

procedurally generated FPS level. 

Game design researchers have presented a taxonomy of design 

patterns for an FPS game. Hullet and Whitehead [14] provided a 

set of formal design pattern for FPS games. Yet, they lack clear 

usages. Cardamone et.al [12] proposed a method of evolving 

maps for FPS games. The novel feature of their work is 

combining a search-based solution to evolve maps based on a 

player’s average fighting time. 

2.2 Game Experience 
Game experience, also known as player experience, is considered 

as the Holy Grail of game design. Terms that describe game 

experience include: immersion, presence and flow. Introduced by 

Csikszentmihalyi, the flow state is known as an optimal state of 

intrinsic motivation, where the person is fully immersed in what 

he is doing [11]. Flow state is what is desired by the game 

designer, yet it is not clear how to achieve in level design for an 

FPS game.  

Nacke and Lindley proposed a method of measuring player 

experience through electroencephalography, electrocardiography, 

electromyography, galvanic skin response and eye tracking 

equipment [15]. However, due to the cost of game testing and the 

equipment, it is difficult to use this method to help game design. 

Instead of measuring the actual player’s physiological traits when 

he or she is playing the game, Sweetser and Wyeth [16] developed 

a model for evaluating player enjoyment in the game using flow. 

Yet since the player experience is measured after the production 

of game, it is not as helpful in game design. 

Based on this idea, Sorenson and Pasquier [17] applied a fitness 

function to quantify fun in a game. We use a similar idea to 

simulate a player’s behavior as a fitness function to evaluate the 

game level, and help in the level design. 

3. Method 
In order to simulate a player’s behavior, we need to examine the 

player’s probable path. Intuitively, the player will likely take the 

path of least resistance.  In order to find the path with least 

resistance in a given area, resistance needs to be formulated. 

 

Figure 2: Theoretical set-up. S represents a closed game area. The 

blue point, x, represents the virtual player, red points represent 

enemies. The vector  ⃗⃗  illustrates the direction from the player to 

one enemy. 

3.1 Damage Function 
Consider a player located at point    and some distribution of 

enemies inside a closed area S, as depicted in Figure 2. In the 

absence of additional targets, we can assume that at time t, the 



 

 

player will receive damage (probabilistically) from one or more 

enemies located in the direction    relative to the player.  This can 

be denoted as          ⃑      . In many scenarios, shooting 

accuracy is affected by the distance between the shooter and the 

target. This is a function of |  |, and represents the likelihood of a 

player getting shot from the position  ⃑       Using this, the total 

damage received from all directions at time t and location   , is 

given by: 

              ∫         ⃑        
 

 (1)  

When facing a large number of enemies, the player may endure 

more damage compared to facing the enemies one by one. This 

may represent game mechanics when a player is stunned slightly 

after being hit and has even more difficulty fighting back or 

seeking cover. The damage function may be biased so that the 

player is penalized when going into enemy condensed area.   

Given a path denoted as           ⃗⃗ ⃗⃗⃗⃗ ⃗⃗  , the damage along the path, 

or in taking the path, is the integral over the function             
with respect to time can be denoted as: 

                    ∫      (    ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃑   )  
  

  

 (2) 

3.2 Optimal path for a fixed origin with cover 

placement c 
We assume that the optimal path is the path with the least 

resistance. Hence, we seek the path with the minimum amount of 

damage from all possible paths connecting A to B, over all time 

periods: 

                                           (3)  

This gives the optimal path given a specific damage function. The 

damage function is related to the cover in S. Let us now look at 

how cover within S changes the optimal path and introduce the 

concept of an “Optimal” cover. 

3.3 Improve the cover 
Before we look at the general case, let’s assume we are given 

some set of covers C for a fixed set of enemy positions. This 

changes the damage function while retaining the enemy positions. 

For each cover c  C, there is an optimal path corresponding to it, 

denoted             . We can define the optimal cover as the 

cover which minimizes some metrics. For instance, the metric 

along its optimal path would be  

                                            (4) 

This biases the cover towards making the level easier (or allowing 

more complex enemy distributions). Of course, if the covers in the 

set C have different amounts of cover, then there will be a bias 

towards the covers with more cover area. (see section 3.4 for other 

metrics). 

3.4 Feasible Covers 
The amount of coverage is typically dictated by the designers. A 

designer may also want to place cover at certain locations. E.g. 

some area in the map may be pre-determined as an inaccessible 

area by the game. If the designer limits the total coverage amount, 

denoted max_cover_amount, we constrain the set of feasible 

covers to those whose cover amount satisfies the following: 

 ∑   
 
                                 (5) 

In general, there may be many constraints on the cover. For 

instance, the minimum unit of cover may be a two foot by six inch 

wall that is three feet high. 

3.5 Optimize cover for other metrics 
Rather than picking the optimal cover according to the minimum 

optimal path damage, we can adopt other metrics. For instance, if 

we desire longer gameplay through this area, we might pick the 

cover with the longest path length of the optimal path. Likewise, 

the cover whose optimal path has the largest standard deviation 

may lead to a more varied gameplay. In general, we can choose a 

metric where the optimal path most closely matches a curve 

specified by the level designer. This would allow a designer to 

specify the flow, and have the algorithm search for the best cover 

to match this. 

In general, we define a fitness function,                : 

               

     {          
({∫ ∫         ⃑        

 

  
 

})}        

 (6) 

Next, we will discuss one approach to determining possible 

covers, determining the damage function and finding the optimal 

cover for a particular configuration. 

4. Implementation 
To simplify the problem, in our implementation we assume that 

there exists a finite set of covers. If this set can be enumerated, 

then a simple brute force method can be applied to compute the 

set of candidate covers. There are two major parts of our 

algorithm: generating a feasible candidate cover set and selecting 

which cover is optimal according to the desired metric. We 

mainly focus on latter, but provide former for completeness. 

4.1 Find an optimal cover placement 
SelectOptimalCover takes two inputs: C as a feasible cover set 

and S as a map for the area. First, we obtain a cover from the 

candidate cover set, and then compute the optimal path based on 

this cover. ComputeOptimalPath takes the current cover 

configuration and returns the optimal path for this configuration 

based on Equation (3).Then the DesiredProfile function Equation 

(6) will be applied to the optimal path to obtain a score for this 

cover configuration. As mentioned above, DesiredProfile may be 

specified by the designer. The cover with the highest score is thus 

the optimal cover configuration. 

SelectOptimalCover(C, S) 

for each        C 

do path = ComputeOptimalPath(cover, S) 

     value = DesiredProfile(path) 

     if value < bestValue 

         then bestValue = value 

      bestCover = cover 

return bestCover 

Note, for time varying distributions of enemies or damage, the 

problem gets overly complex. Given constraints on the player’s 

movement speed and the constraint that the enemy is fixed, we 

can ignore time and use Dijkstra’s algorithm to compute the 

optimal path. We take each discretized grid cell in S as a graph 

node with each node connected to either its 4 or 8 neighbors. The 



 

 

edge weight is computed as the average damage of the current 

node and neighboring node. Therefore, we can compute the 

optimal path from a pair of given start and end locations within 

reasonable time. Dijkstra’s algorithm is used instead of A*, as the 

path weight can be near zero from any location to the exit since it 

is based on damage and not distance. The performance of the 

algorithm is related to the size of the discretized grid. For a large 

area in a FPS game, the user may want to use a coarse grid to 

approximate the locations of cover. 

4.2 Create candidate set 
In creating candidate covers, we take two inputs: one is the 

number of covers to be generated; another is the cover constraint 

T, which can be a number or a function. First we initialize the set 

C. Then for each iteration, one cover will be generated by the 

GenerateCover function. The generated cover is then tested 

against our SatisfyConstraint function to determine whether it 

satisfies all of the user’s constraints in Equation (5).  If the 

generated cover satisfies the cover constraint, it is added to the 

candidate cover set. 

CreateCandidateCover(n, T) 

      

    

while     

 do                        

      if SatisfyConstraint(cover ,T) = false 

          then continue 

      else UNION(C, cover)  

            

return C 

5. Experimental Result 
We implemented our algorithm to generate several cover 

configurations for the same cover constraints. In our simulation, 

we assume that enemies are distributed in S. In order to speed up 

the simulation, we assume that the enemy flux, which is the 

damage from an enemy, doesn’t change over time. In order to 

encourage players to take cover, high flux areas where most 

enemies can attack are penalized. In addition, a kernel function 

acted as shooting accuracy is computed as a decay factor for 

damage, since the larger the distance between the shooter and the 

target, the less chance that the shooter will hit the target. 

We use the Damage Map to indicate the damage in the area. A 

discretized grid represents the amount of damage received if the 

player is on that grid cell. Two use cases are discussed, one with a 

uniform enemy distribution along the perimeter of S (Figure 3), 

another with a discrete enemy distribution inside of S (Figure 5).  

5.1 Uniform enemy distribution 
Our first use case uses an analytical computation of the damage 

function. We consider an infinite number of enemies that is 

uniformly distributed along the perimeter.  There are n covers, 

each of which is represented as a circular area with radius of r. 

Covers are non-overlapping and constrained to be contained in S 

with a radius of R. 

Since the enemy is uniformly distributed along the perimeter of S, 

the damage for each grid cell can be represented as a percentage 

of the perimeter. Enemies can only attack a player when they are 

able to see the player, so whether the ray between the player and 

the enemy is occluded by a cover determines whether the player is 

attacked by the enemy. Therefore the damage of a grid cell can be 

computed as the percentage of the perimeter that is not occluded 

by cover. 

To encourage the cover to be used, we biased every damage map 

so that if more than 70% of the map was not occluded by cover, 

the damage would increase. Also a small amount of path length 

penalty was added when searching for the optimal path for each 

cover. The entry location is at the top of the area, while the exit 

location is at the bottom of the area. As depicted in Figure 3, three 

different cover placements are selected using different metrics. 

From 1000 generated covers, Figure 3(a) shows the covers where 

the optimal path has the least amount of damage compared to the 

rest of the covers. Covers are represented as a circular area with 

hatch pattern in area S. The optimal path is illustrated with a red 

curve. The darker the region gets the less damage it receives when 

the player is at that point. In Figure 3(b) and 3(c), the center part 

in S is much brighter due to a large open area where nothing 

occludes the enemies and falls above 70%. On contrary, in the 

center of area S in Figure 3(a), it appears darker compared to 

Figure 3(b) and 3(c), since a larger percentage of the perimeter is 

occluded. 

The longest path length cover is displayed in Figure 3(b). This 

cover placement corresponds to the longest optimal path in the 

candidate cover set. Another metric might be the optimal path 

with the largest standard deviation of damage across the path 

(Figure 3(c)). If we consider high damage areas as ‘intense’ and 

low damage areas as ‘relaxing’, this path may provide a more 

interesting flow to game experience. The player may experience a 

relaxing and stealthy gameplay in the beginning. After traveling to 

the center of S, he or she may have to fight their way to the exit. 

Therefore, this flow contains a surprising element of gameplay. 

Note that all of the paths in Figures 3(a) - 3(c), exhibit a more 

circuitous route than a nearly straight path connecting the entry to 

the exit. This is dictated by the damage function rather than by a 

simple distance function. In Figure 3(b), the path goes around the 

one cover rather than in between or below the cover because the 

path between the two circles is not wide enough for a player to go 

through. 

Figure 4 compares these three different metrics for optimal cover: 

the minimum path damage (red line), the longest path length (blue 

line) and the largest standard deviation of the path damage (black 

line).The amount of damage received along the path is shown, 

with the x-axis as the path length and the y-axis as the damage. On 

the metric for largest standard deviation, it starts with low damage 

since the beginning of the path is on the top of area. After going 

back and forth between covers, the path leads to a wide open area. 

This results in high damage, which is reflected as high values on 

the curve in Figure 4. This curve has a flow of restful to sudden 

danger. The longest path is backwards; it starts out intense then 

gets restful. 

 



 

 

 

 

Figure 4: The damage/length graph by 3 selected path in Figure 3. Red 
line is the minimum damage path, blue line is the longest path, black line 

is the largest standard deviation path. 

For Figure3 (a), this type of cover can be used as a relatively easy 

level for a player to pass or maybe useful for a more stealthy 

gameplay element. In Figure 3(b), more gameplay can be 

provided in a fixed area of S. In Figure 3(c), the cover placement 

may bring the player a surprising game experience. A 

damage/path profile can also be utilized to select an optimal cover 

as in Equation 6. Just like Figure 4, instead of showing the curve 

for a designer to use, a most similar curve will be chosen from the 

candidate set based on the designer’s input curve. 

5.2 Discrete enemy distribution 
Our second use case has a discrete enemy distribution inside the 

area S. This time we use a blueprint of a room as the area. In this 

case, ten non-overlapping enemies are randomly placed inside the 

area. We constrain the cover so that in total there are five covers, 

and no overlaps with each other or enemies. The entry and exit 

points are placed on the boundary of the area, at the bottom left 

and the middle right respectively. As shown in Figure 5, the 

optimal paths connecting the entry and exit points are marked as 

red lines. 

We ran 10000 iterations for this configuration. Cover with the 

minimum path damage is displayed in Figure 5(a). Again the 

darker area in the image receives less damage. The brightest part 

is where an enemy is located (purple points). The damage from an 

enemy fades to zero based on distance, due to a shooting accuracy 

kernel.  

The longest path length cover is displayed in Figure 5(b) while 

largest standard deviation of damage across the path is depicted in 

Figure 5(c). Note that the enemy distribution is predetermined, so 

in this scenario the designer can mark some area as a heavily 

guarded area (high enemy population) and some areas as patrol 

areas (low enemy population). 

As shown in Figure 5, all the optimal paths started with low 

damage then sought their way to the exit with minimal total 

damage. The covers in Figure 5(a) were placed close to enemies 

on the top and left, thus created a low damage zone for its optimal 

path.  Its optimal path is marked as red lines in Figure 6, 

indicating the overall low damage along the optimal path. 

Compared to Figure 5(a), in Figure 5(b), covers placed between 

the enemies at the bottom forced the optimal path to take a longer 

route. Denoted as a blue line in Figure 6, its optimal path has the 

longest path length. In Figure 5(c) the player has to progress 

through two areas with high damage (the two high peaks in Figure 

6), while the rest of the path has a damage near zero. 

 

 

(a) Minimum Damage Cover 

 

(b) Longest Path 

 

(c) Largest Standard Deviation 

Figure 3: Results generated for a fixed cover amount within a circle and equal damage emanating from the boundary of a circle. Cover is indicated by the 

hatch pattern. Damage function has high values mapped to yellow and low values mapped to black. (a)(b)(c) The cover map with computed optimal path. (a) 

Cover that results in an optimal path with the minimum amount of damage (the easiest configuration). (b) Cover that forces the player to explore more of the 

area. Note that some of the cover is not used. (c) Cover whose optimal path has regions of heavy damage and little damage. This may provide a nice flow or 

allow the player to rest and strategize before making it to the exit. 



 

 

 

(a)Minimum Damage  

 

(b) Longest Path 

 

(c)Largest Standard Deviation 

Figure 5: Result generated from a fixed distribution of enemy inside S. Purple point indicates enemy. Same as Figure 3, Cover is indicated by the hatch 

pattern. Damage function has high values mapped to bright yellow and low value mapped to black.(a)(b)(c) is the damage map with optimal path. 

 

Figure 6: Damage/Length Path by 3 chosen paths in Figure 5.  

Figure 8 illustrates several different cover placements and their 

damage profiles generated using a fixed discrete enemy 

distribution in a circular area S and a constant cover amount.  

For each image, the top part shows the damage map while the 

bottom part shows a damage bar which is color coded by 

damage along the optimal path. We can use this visualization to 

quickly scan the possible cover configurations. For example, on 

row 4 column 4, the cover will provide an interesting flow to the 

game since its damage bar follows the pattern of interleaving 

peaks and toughs. In Figure 7, we show a sample level of an 

FPS game with this cover configuration generated in Unity.  

Our result is implemented with C++ and visualized using 

OpenGL. The experiment was run on an Intel Core 2 Duo chip 

set. Five hundred cover sets can be computed within 2 minutes, 

around 4 cover sets per second, which is tolerable for interactive 

level design. Our code is unoptimized and not multithreaded. 

6. CONCLUSION 
A framework for optimal cover placement under fixed enemy 

positions has been presented for FPS style games. Our 

contributions include (1) a definition of the damage flux, its 

calculation and considerations for contrast enhancing it to favor 

covered or partially covered locations; (2) Optimal path 

determination based upon the damage function; (3) An iterative 

approach to generating and searching for optimal cover; and (4) 

Several metrics that can be used to steer the optimal search.  The 

method can be applied in any FPS or RPG game to obtain 

various styles of gameplay as dictated by the designer. We 

presented two simulations to aid in developing and proving the 

framework. Both work with a discretization of the damage 

function. One focuses on enemy fire from outside of a local 

region, while the other considers enemy locations within a 

region. The former can be viewed as indicating how exposed a 

player is along a path and may work well for any enemy 

placement, dynamic enemy placement and/or multi-player 

situations. The latter simulation allows the cover to be tweaked 

in the case of hardened or static enemy placement. The metrics 

allow for longer game play within an area (longest optimal 

path), better or stronger enemies (minimal damage), or shaping 

of the flow of the level (optimal path whose damage profile 

most closely matches a desired profile curve). The simulation is 

fairly fast, achieving an analysis of over four cover 

configurations per second. 

7. FUTURE WORK 
In this paper, we constrain the enemies to static locations. The 

distribution of enemies in a complex area affects the variations 

of paths that we can obtain from the simulation. For future work, 

we will look into the relationship between the enemy 

distributions and cover placement. Also we would like to model 

time-varying enemy distributions or time-varying damage flux. 

This allows for the enemies to move as well as simulates the 

player eliminating hostile threats as he or she progresses along 

the path. This will require a complex heuristic for path finding. 

The addition of other game objects (e.g. ammo and health 

potions) can be added into our simulation with the addition of 

rewards as well as damage. The visualization of the cover, its 

optimal path and the path’s damage profile visualization provide 

a rich and quick synopsis for the designer. Using this in an 

interactive exploration such as Design Galleries [18] should 

provide a rich tool for the designer to experiment with different 

cover configurations, cover amounts and cover shapes. Having 

knowledge of the amount of damage a player can sustain leads 

to an iterative system where the search is expanded to add more 

and more cover until the overall damage (or peak damage) along 

a path falls below some threshold. 



 

 

 

Figure 7  Screen shot of an FPS game using our cover placement 
algorithm. Predetermined turret placement (camouflage items) 

corresponds to the enemy locations. Large trees are used for cover. 

8. REFERENCES 

[1]  Co, P., “Level Design for Games: Creating Compelling Game  
Experiences.”, New Riders, Feb 2006.  

[2]  343. Industries, Halo 4: Waypoint, Microsoft Studios, 2012. 

http://www.halowaypoint.com/halo4/en-us/. 

[3]  Epic Games, Inc., Unreal Tournament 3, Epic Games, Inc., 2006. 

http://www.unrealtournament.com/. 

[4]  Edios Montreal, Deus Ex: Human Revolution, Square Enix, 2011. 
http://www.deusex.com/. 

[5]  Arkane Studios, Dishonored, Bethesda Softworks, 2012. 

http://www.dishonored.com/. 

[6]  Rogers, S., Level Up!: The Guide to Great Video Game Design", 

John Wiley & Sons, July 2010  

[7]  Sicart, M., Defining Game Mechanics, Game Studies - The 

International Journal of Computer Game Research - Volume 8 

Issue 2, December 2008.   

[8]  Bielby, M., The Complete YS Guide to Shoot 'Em Ups', Your 
Sinclair, July, 1990 (Issue 55), p. 33 

[9]  Davies, M., Examining Game Pace: How Single-Player Levels 

Tick, Gamasutra May 2009 

http://www.gamasutra.com/view/feature/132415/examining_game
_pace_how_.php?print=1. 

[10]  Treyarch, Call of Duty: Black Ops II, Activision, 2012. 

http://www.callofduty.com/blackops2. 

[11]  Csikszentmihalyi, M., Flow: The Psychology of Optimal 

Experience, New York: Harper and Row., 1990.   

[12]  Cardamone, L.,  Yannakakis, G. N., Togelius, J. and Lanzi, P. L., 
2011. Evolving Interesting Maps for a First Person Shooter. In 

Proceedings of the 2011 International Conference on Applications 

of Evolutionary Computation - Volume Part I 
(EvoApplications'11), Cecilia Di Chio, Stefano Cagnoni, Carlos 

Cotta, Marc Ebner, and Anikó Ekárt (Eds.), Vol. Part I. Springer-

Verlag, Berlin, Heidelberg, 63-72. 

[13]  Guttler, C. and Johansson, T. D., 2003. Spatial Principles of 
Level-Design in Multi-player First-person Shooters. In 

Proceedings of the 2nd Workshop on Network and System Support 

for Games (NetGames '03). ACM, New York, NY, USA, 158-170. 

[14]  Hullett, K. and Whitehead, J., 2010. Design Patterns in FPS 
Levels. In Proceedings of the Fifth International Conference on 

the Foundations of Digital Games (FDG '10). ACM, New York, 

NY, USA, 78-85. 

[15]  Nacke, L. and Lindley, C. A., 2008. Flow and Immersion in First-

person Shooters: Measuring the Player's Gameplay Experience. In 

Proceedings of the 2008 Conference on Future Play: Research, 
Play, Share (Future Play '08). ACM, New York, NY, USA, 81-

88. 

[16]  Sweetser, P. and Wyeth, P. 2005. GameFlow: a Model for 

Evaluating Player Enjoyment in Games. Computers in 
Entertainment. Volume 3, Issue 3 (July 2005), 3-3. 

[17]  Sorenson, N. and Pasquier, P., 2010. Towards a Generic 

Framework for Automated Video Game Level Creation. In 

Proceedings of the 2010 International Conference on Applications 
of Evolutionary Computation - Volume Part I 

(EvoApplicatons'10), Cecilia Chio, Stefano Cagnoni, Carlos Cotta, 

Marc Ebner, and Anikó Ekárt (Eds.), Vol. Part I. Springer-Verlag, 
Berlin, Heidelberg, 131-140.  

[18]  Marks, J., Andalman, B., Beardsley, P. A., Freeman, W., 

Gibson,S.,  Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, 

W., Ryall, K.,  Seims, J. and Shieber, S., 1997. Design Galleries: a 
General Approach to Setting Parameters for Computer Graphics 

and Animation. In Proceedings of the 24th Annual Conference on 

Computer Graphics and Interactive Techniques (SIGGRAPH '97). 
ACM Press/Addison-Wesley Publishing Co., New York, NY, 

USA, 389-400. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

   

     

 

  

 

 

 

   
 

     

Figure 8: Twenty-five different damage maps and bars. Damage bars are color coded to represent the damage received along the optimal path. The entry 

point of the optimal path is mapped to the left and the exit point is mapped to the right. Darker areas indicate low damage while brighter areas mean high 

damage. Enemy locations are marked as blue points on each damage map. The optimal path is marked as a red line for each map. Damage maps are 

generated with the same enemy distribution and a fixed amount of cover.  

 

 


